Ponerinae
Ponerinae | |
---|---|
Myopias tenuis | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Family: | Formicidae |
Subfamily: | Ponerinae Lepeletier de Saint-Fargeau, 1835 |
Diversity | |
49 genera 1,407 species 13 fossil genera 90 fossil species |
Ponerinae is the largest ant subfamily outside the formicoid clade, and is rivaled or exceeded in diversity only by Dolichoderinae, Formicinae and Myrmicinae within that clade. Species of ponerines range from small and cryptic to large and conspicuous.
Identification
The mesosoma is attached to the gaster with a single distinct segment, the petiole. The gaster usually has a slight but distinct impression between the first and second segments. In a few other cases (species of Odontomachus) the gaster is smooth and uniform, but here the mandibles are elongate and straight, with teeth only at the extreme tip, and attached close together along the front margin of the head. The upper surface of the tip of the gaster (the pygidium) is rounded and lacks a row of spines or teeth on its outer and trailing edge. The sting is present (although often retracted and difficult to see).
Most species in this large and diverse subfamily can be identified by the presence of a single-segmented petiole combined with a constriction between the first and second segment of the gaster. In the few cases where the constriction is absent (Odontomachus), the overall shape of the gaster or the shape of the head can be used to identify these ants (see above for details).
Boudinot (2015) - Male Ponerinae share the following characters: antennal toruli situated well-posterad anterior clypeal margin (except Dolioponera); at least 4 closed cells present on forewing (Dolioponera with 3); propodeal lobes usually present; jugal lobe usually present; petiolar tergum and sternum distinct; cinctus between abdominal pre- and posttergites IV usually present; and abdominal sternum IX unpronged and edentate. Three final sets of characters are required for identification: 1) (Platythyreini) mandibles triangular, tibial spur formula 2,2; 2) (Ponerini) mandibles spatulate, linear, or nub-like and mesonotum not anteriorly elongated; and 3) (Ponerini, Dolioponera) forewing with three closed cells, propodeal lobes present, antennal toruli situated at anterior extreme of head, oblique mesopleural sulcus absent, and cinctus present. The eighth abdominal tergum of male Ponerinae may be spiniform, a unique state among the Formicidae, but this character is not present in all genera and may be interspecifically variable. The spur formula of Ponerini is variable.
See images of genera within this subfamily |
Keys including this Subfamily
- Key to Iberian Peninsula Subfamilies
- Key to Australian Ant Subfamilies
- Key to Subfamilies of North America
- Key to Subfamilies, Males
- Key to subfamilies of the Neotropical region
Keys to Genus in this Subfamily
- Key to New World Genera of Ponerinae
- Key to African and Malagasy Genera of Ponerinae
- Key to Eurasian and Australian Genera of Ponerinae
- Key to Australian Genera of Ponerinae
- Key to North American Genera of Ponerinae (Fisher and Cover)
- Key to North American Genera of Ponerinae (Schmidt and Shattuck)
- Key to Neotropical Ponerinae genera
- Key to Vietnamese Ponerinae Genera
- Key to Ponerinae genera of the southwestern Australian Botanical Province
- Ponerinae of the southwestern Australian Botanical Province
- Key to Philippine Ponerinae
- Key to the genera of Greek Ponerinae
- Key to Taiwanese Ponerinae genera
- Key to Japanese Ponerinae queens
Distribution
Australia
They are found throughout Australia from pristine habitats to disturbed sites such as gardens and parks, and can be quite abundant. Workers are predacious, generally forage on the ground, and some specialise on a very limited range of prey. In addition, many species have powerful and painful stings used for subduing prey and as a defensive measure against intruders. Within Australia there are about 200 described species in 10 genera (pre - Schmidt and Shattuck 2012), with numerous species yet to be studied in detail.
Distribution and Species Richness based on AntMaps
Statistics
Extant Taxa
Tribes | Valid Genera | % World Genera | Invalid Genera | Valid Species/Subsp. | % World Species | Invalid Species/Subsp. |
---|---|---|---|---|---|---|
2 | 49 | 9.4% | 32 | 1,407 | 9.21% | 511 |
Fossil Taxa
Fossil Genera | % World Fossil Genera | Valid Fossil Species/Subsp. | % World Fossil Species/Subsp. |
---|---|---|---|
13 | 7.4% | 90 | 9.93% |
Fossils known from: Aix-en-Provence, France (Late Oligocene), Baltic amber, Baltic Sea region, Europe (Priabonian, Late Eocene), Bembridge Marls, Isle of Wight, UK (Priabonian, Late Eocene), Bitterfeld amber, Baltic Sea region, Europe (Priabonian, Late Eocene), Bolshaya Svetlovodnaya, Sikhote-Alin, Russia (Priabonian, Late Eocene), Dominican amber, Dominican Republic (Burdigalian, Early Miocene), Florissant, Colorado, United States (Late Eocene), Foulden Maar diatomite, New Zealand (Aquitanian, Early Miocene), Fushun amber, Liaoning, China (Ypresian, Early Eocene), Green River Formation, Colorado, United States (Lutetian, Middle Eocene), Kishenehn Formation shale, Montana, United States (Lutetian, Middle Eocene), Kleinkems, Germany (Early Oligocene), Kuban Province, Caucasus, Russia (Miocene), Malyi Kamyshlak, Kerch, Crimea, Russian Federation (Middle Miocene), Messel, Germany (Lutetian, Middle Eocene), Most Formation, Czech Republic (Burdigalian, Early Miocene), Oise amber, France (Ypresian, Early Eocene), Orapa kimberlitic deposits, Botswana (Turonian, Late Cretaceous), Radoboj, Croatia (Burdigalian, Early Miocene), Rott, Westphalia, Germany (Late Oligocene), Rovno amber, Baltic Sea region, Europe (Priabonian, Late Eocene), Sakhalin amber, Ukraine (Thanetian, Paleocene), Shanwang, China (Early Miocene), Sicilian amber, Italy (Late/Upper Miocene), Vishnevaya Balka Creek, Stavropol, Russian Federation (Middle Miocene).
List of Tribes and Genera
Tribes
Extant Genera
Fossil Genera
Notes
Fernandes et al. (2015) - The Ponerinae are notable for combining simple social organization with a high diversity of derived morphological, ecological, and behavioral traits (Schmidt & Shattuck 2014). They are broadly categorized based on their foraging microhabitats as either epigaeic, foraging on the surface of the ground or on low vegetation, or cryptobiotic, foraging in soil, leaf litter, rotting wood, or other concealed microhabitats, although many taxa are intermediate between these extremes. Cryptobiotic ant species often converge on several morphological traits that are correlated with life in restricted, dark conditions, including small bodies; eyes typically greatly reduced in size or even entirely absent; clubbed antennae; and legs often short and stocky, sometimes armed with stout setae to increase traction in soil or wood, and with only a single metatibial spur (Schmidt & Shattuck 2014).
Boudinot (2015) - Males Males are unknown for 9 genera (Asphinctopone, Austroponera, Boloponera, Feroponera, Fisheropone, Iroponera, Loboponera, Odontoponera, Promyopias); the males of Belonopelta, Emeryopone, Myopias and Simopelta will be described in forthcoming publications (B. Boudinot in prep. and R.S. Probst et al. in prep.). The male of Dolioponera was discovered by the author during the review period of the present work.
Unlike the female castes, which have the lateral torular arch fused with the frontal carina (Bolton 2003), no single character was found to distinguish male Ponerinae from other subfamilies. The Platythyreini and Ponerini share numerous characteristics but are easier to key separately due to the informatively variable development of male mandibles. The Ponerini themselves are challenging to key as the males of some genera are highly derived, such as Simopelta, which lacks the mesopleural sulcus and the cinctus of abdominal segment III, and Dolioponera, which also lacks the mesopleural sulcus and has the antennal toruli situated near the anterior head margin. A polythetic definition of the Ponerini is thus required. Fortunately, some of the derived character states of the Ponerini also serve to distinguish them from the “generalized” ants, including the Formicinae and Dolichoderinae.
Yoshimura & Fisher (2007) and previously Yoshimura & Onoyama (2002) used the scutoscutellar sulcus and conformation of the mesopleural sulcus to diagnose the Ponerinae for the Malagasy and Japanese regions, respectively. These structures are variably developed on the global level, with several genera presenting unsculptured scutoscutellar sulci, and the mesopleural sulcus is not always present. In general, presence of the abdominal segment III cinctus is more stable than these sulci. Understanding the generic boundaries of male Ponerinae will be most difficult in the Afrotropics, where the most genera occur and where the least number of genera have males described.
Morphology
Karyotype Data
- Explore: Show all Karyotype data or Search these data. See also a list of all data tables or learn how data is managed.
Known Haploid Counts: 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 34, 35, 38, 41, 46, 47, 48, 52, 53, 57, 58, 59, 60.
Haploid Count Details: 11 (Taxon: Ectomomyrmex astutus), 11 (Taxon: Brachyponera), 11 (Taxon: Brachyponera chinensis), 11 (Taxon: Brachyponera luteipes), 12 (Taxon: Anochetus), 12 (Taxon: Hypoponera pruinosa), 12 (Taxon: Neoponera carinulata), 12 (Taxon: Neoponera goeldii), 13 (Taxon: Leptogenys hysterica), 13 (Taxon: Neoponera moesta), 13 (Taxon: Neoponera bactronica), 13 (Taxon: Leptogenys kraepelini), 14 (Taxon: Anochetus emarginatus), 14 (Taxon: Neoponera bactronica), 14 (Taxon: Cryptopone sauteri), 15 (Taxon: Anochetus), 15 (Taxon: Odontomachus), 15 (Taxon: Anochetus yerburyi), 15 (Taxon: Anochetus modicus), 15 (Taxon: Anochetus altisquamis), 15 (Taxon: Neoponera inversa), 15 (Taxon: Odontomachus latidens), 15 (Taxon: Odontomachus rixosus), 15 (Taxon: Mayaponera constricta), 16 (Taxon: Odontomachus latidens), 16 (Taxon: Leptogenys diminuta), 17 (Taxon: Anochetus), 17 (Taxon: Anochetus), 17 (Taxon: Thaumatomyrmex mutilatus), 17 (Taxon: Neoponera villosa), 18 (Taxon: Mayaponera arhuaca), 18 (Taxon: Neoponera apicalis), 19 (Taxon: Anochetus), 19 (Taxon: Ectomomyrmex), 19 (Taxon: Hypoponera confinis), 19 (Taxon: Neoponera apicalis), 19 (Taxon: Neoponera apicalis), 19 (Taxon: Rasopone ferruginea), 19 (Taxon: Leptogenys diminuta), 20 (Taxon: Neoponera apicalis), 20 (Taxon: Platythyrea pilosula), 21 (Taxon: Leptogenys unistimulosa), 21 (Taxon: Neoponera verenae), 21 (Taxon: Thaumatomyrmex ferox), 21 (Taxon: Odontoponera transversa), 22 (Taxon: Odontomachus), 22 (Taxon: Odontomachus), 22 (Taxon: Odontomachus), 22 (Taxon: Odontomachus hastatus), 22 (Taxon: Odontomachus bauri), 22 (Taxon: Odontomachus haematodus), 22 (Taxon: Odontomachus biumbonatus), 22 (Taxon: Odontomachus affinis), 22 (Taxon: Odontomachus simillimus), 22 (Taxon: Odontomachus simillimus), 22 (Taxon: Odontomachus meinerti), 22 (Taxon: Odontomachus chelifer), 22 (Taxon: Odontomachus scalptus), 22 (Taxon: Thaumatomyrmex mutilatus), 22 (Taxon: Centromyrmex feae), 23 (Taxon: Leptogenys iridescens), 23 (Taxon: Anochetus horridus), 23 (Taxon: Leptogenys borneensis), 23 (Taxon: Leptogenys processionalis), 23 (Taxon: Neoponera marginata), 23 (Taxon: Odontoponera transversa), 24 (Taxon: Bothroponera), 24 (Taxon: Leptogenys myops), 24 (Taxon: Neoponera venusta), 24 (Taxon: Pseudoneoponera rufipes), 26 (Taxon: Leptogenys peuqueti), 27 (Taxon: Leptogenys peuqueti), 3 (Taxon: Ponera scabra), 30 (Taxon: Pseudoneoponera), 30 (Taxon: Neoponera verenae), 30 (Taxon: Neoponera verenae), 30 (Taxon: Thaumatomyrmex contumax), 31 (Taxon: Dinoponera longipes), 31 (Taxon: Neoponera verenae), 31 (Taxon: Thaumatomyrmex mutilatus), 31 (Taxon: Pachycondyla crassinoda), 32 (Taxon: Neoponera verenae), 34 (Taxon: Neoponera verenae), 34 (Taxon: Neoponera verenae), 34 (Taxon: Neoponera apicalis), 34 (Taxon: Neoponera apicalis), 35 (Taxon: Neoponera metanotalis), 38 (Taxon: Bothroponera rubiginosa), 4 (Taxon: Ponera scabra), 4 (Taxon: Ponera scabra), 41 (Taxon: Dinoponera gigantea), 46 (Taxon: Dinoponera quadriceps), 47 (Taxon: Platythyrea tricuspidata), 48 (Taxon: Pachycondyla harpax), 5 (Taxon: Diacamma ceylonense), 52 (Taxon: Pachycondyla striata), 53 (Taxon: Dinoponera lucida), 57 (Taxon: Dinoponera lucida), 57 (Taxon: Dinoponera grandis), 58 (Taxon: Dinoponera lucida), 59 (Taxon: Dinoponera lucida), 59 (Taxon: Dinoponera lucida), 6 (Taxon: Ponera), 6 (Taxon: Ponera), 6 (Taxon: Cryptopone rotundiceps), 6 (Taxon: Pseudoponera gilberti), 6 (Taxon: Pseudoponera gilberti), 6 (Taxon: Neoponera unidentata), 6 (Taxon: Ponera japonica), 6 (Taxon: Ponera pennsylvanica), 60 (Taxon: Dinoponera lucida), 60 (Taxon: Dinoponera lucida), 7 (Taxon: Diacamma vagans), 7 (Taxon: Pseudoponera stigma), 7 (Taxon: Pseudoponera stigma), 7 (Taxon: Pseudoponera succedanea), 7 (Taxon: Diacamma indicum), 9 (Taxon: Ectomomyrmex astutus), 9 (Taxon: Cryptopone testacea), 9 (Taxon: Platythyrea quadridenta).
Known Diploid Counts: 7, 8, 10, 12, 14, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 58, 60, 62, 64, 68, 70, 76, 82, 90, 92, 93, 94, 96, 104, 106, 114, 116, 118, 120.
Diploid Count Details: 10 (Taxon: Diacamma ceylonense), 104 (Taxon: Pachycondyla striata), 106 (Taxon: Dinoponera lucida), 114 (Taxon: Dinoponera lucida), 114 (Taxon: Dinoponera grandis), 116 (Taxon: Dinoponera lucida), 118 (Taxon: Dinoponera lucida), 118 (Taxon: Dinoponera lucida), 12 (Taxon: Ponera), 12 (Taxon: Ponera), 12 (Taxon: Cryptopone rotundiceps), 12 (Taxon: Pseudoponera gilberti), 12 (Taxon: Pseudoponera gilberti), 12 (Taxon: Pseudoponera gilberti), 12 (Taxon: Pseudoponera gilberti), 12 (Taxon: Neoponera unidentata), 12 (Taxon: Pseudoponera stigma), 12 (Taxon: Pseudoponera stigma), 12 (Taxon: Mayaponera arhuaca), 12 (Taxon: Ponera japonica), 12 (Taxon: Ponera pennsylvanica), 120 (Taxon: Dinoponera lucida), 14 (Taxon: Diacamma vagans), 14 (Taxon: Pseudoponera gilberti), 14 (Taxon: Pseudoponera stigma), 14 (Taxon: Pseudoponera stigma), 14 (Taxon: Pseudoponera stigma), 14 (Taxon: Pseudoponera succedanea), 14 (Taxon: Diacamma indicum), 18 (Taxon: Ectomomyrmex astutus), 18 (Taxon: Cryptopone testacea), 18 (Taxon: Platythyrea quadridenta), 22 (Taxon: Mesoponera), 22 (Taxon: Ectomomyrmex astutus), 22 (Taxon: Brachyponera), 22 (Taxon: Brachyponera chinensis), 22 (Taxon: Brachyponera luteipes), 24 (Taxon: Anochetus), 24 (Taxon: Hypoponera pruinosa), 24 (Taxon: Neoponera carinulata), 24 (Taxon: Neoponera goeldii), 26 (Taxon: Leptogenys hysterica), 26 (Taxon: Neoponera moesta), 26 (Taxon: Neoponera curvinodis), 26 (Taxon: Neoponera bactronica), 26 (Taxon: Leptogenys kraepelini), 28 (Taxon: Mesoponera), 28 (Taxon: Anochetus emarginatus), 28 (Taxon: Neoponera curvinodis), 28 (Taxon: Neoponera bactronica), 28 (Taxon: Cryptopone sauteri), 30 (Taxon: Anochetus), 30 (Taxon: Odontomachus), 30 (Taxon: Anochetus yerburyi), 30 (Taxon: Anochetus targionii), 30 (Taxon: Anochetus modicus), 30 (Taxon: Anochetus altisquamis), 30 (Taxon: Neoponera inversa), 30 (Taxon: Odontomachus latidens), 30 (Taxon: Odontomachus rixosus), 30 (Taxon: Mayaponera constricta), 32 (Taxon: Odontomachus latidens), 32 (Taxon: Leptogenys diminuta), 34 (Taxon: Anochetus), 34 (Taxon: Anochetus), 34 (Taxon: Thaumatomyrmex mutilatus), 34 (Taxon: Neoponera villosa), 36 (Taxon: Mesoponera), 36 (Taxon: Mayaponera arhuaca), 36 (Taxon: Neoponera apicalis), 38 (Taxon: Ectomomyrmex), 38 (Taxon: Hypoponera confinis), 38 (Taxon: Neoponera apicalis), 38 (Taxon: Neoponera apicalis), 38 (Taxon: Rasopone ferruginea), 38 (Taxon: Leptogenys diminuta), 40 (Taxon: Neoponera apicalis), 40 (Taxon: Platythyrea pilosula), 42 (Taxon: Leptogenys unistimulosa), 42 (Taxon: Neoponera verenae), 42 (Taxon: Thaumatomyrmex ferox), 42 (Taxon: Odontoponera transversa), 44 (Taxon: Odontomachus), 44 (Taxon: Odontomachus), 44 (Taxon: Odontomachus), 44 (Taxon: Odontomachus hastatus), 44 (Taxon: Odontomachus bauri), 44 (Taxon: Odontomachus haematodus), 44 (Taxon: Odontomachus biumbonatus), 44 (Taxon: Odontomachus affinis), 44 (Taxon: Odontomachus simillimus), 44 (Taxon: Odontomachus simillimus), 44 (Taxon: Odontomachus simillimus), 44 (Taxon: Platythyrea sinuata), 44 (Taxon: Odontomachus meinerti), 44 (Taxon: Odontomachus chelifer), 44 (Taxon: Odontomachus scalptus), 44 (Taxon: Thaumatomyrmex mutilatus), 44 (Taxon: Brachyponera), 44 (Taxon: Centromyrmex feae), 46 (Taxon: Leptogenys iridescens), 46 (Taxon: Anochetus horridus), 46 (Taxon: Leptogenys borneensis), 46 (Taxon: Leptogenys processionalis), 46 (Taxon: Neoponera marginata), 46 (Taxon: Odontoponera transversa), 48 (Taxon: Bothroponera), 48 (Taxon: Leptogenys myops), 48 (Taxon: Neoponera venusta), 48 (Taxon: Pseudoneoponera rufipes), 52 (Taxon: Leptogenys peuqueti), 54 (Taxon: Neoponera), 54 (Taxon: Neoponera concava), 54 (Taxon: Leptogenys peuqueti), 58 (Taxon: Neoponera verenae), 58 (Taxon: Neoponera verenae), 58 (Taxon: Neoponera verenae), 60 (Taxon: Pseudoneoponera), 60 (Taxon: Neoponera verenae), 60 (Taxon: Neoponera verenae), 60 (Taxon: Thaumatomyrmex contumax), 62 (Taxon: Dinoponera longipes), 62 (Taxon: Neoponera verenae), 62 (Taxon: Thaumatomyrmex mutilatus), 62 (Taxon: Pachycondyla crassinoda), 64 (Taxon: Neoponera verenae), 68 (Taxon: Neoponera verenae), 68 (Taxon: Neoponera verenae), 68 (Taxon: Neoponera apicalis), 68 (Taxon: Neoponera apicalis), 7 (Taxon: Ponera scabra), 70 (Taxon: Neoponera metanotalis), 76 (Taxon: Bothroponera rubiginosa), 8 (Taxon: Ponera scabra), 8 (Taxon: Ponera scabra), 82 (Taxon: Dinoponera gigantea), 90 (Taxon: Pachycondyla harpax), 92 (Taxon: Dinoponera quadriceps), 92 (Taxon: Platythyrea tricuspidata), 92 (Taxon: Pachycondyla harpax), 93 (Taxon: Platythyrea tricuspidata), 94 (Taxon: Platythyrea tricuspidata), 94 (Taxon: Pachycondyla impressa), 96 (Taxon: Platythyrea tricuspidata), 96 (Taxon: Pachycondyla harpax).
Phylogeny
Formicoidea
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Phylogeny of Formicidae for details.
Nomenclature
The following information is derived from Barry Bolton's Online Catalogue of the Ants of the World.
- PONERINAE [subfamily of Formicidae]
- Ponerites Lepeletier de Saint-Fargeau, 1835: 185. Type-genus: Ponera Latreille, 1804: 179.
Taxonomic History
- Ponerinae as group name: Lepeletier de Saint-Fargeau, 1835: 185 [Ponérites].
- Ponerinae as family: Smith, F. 1851: 6 [Poneridae]; Smith, F. 1858b: 76 [Poneridae]; Smith, F. 1861b: 44 [Poneridae]; Smith, F. 1871a: 320 [Poneridae]; André, 1882a: 125 [Poneridae]; Cresson, 1887: 93 [Poneridae]; Emery, 1894g: 379 [Poneridae]; Saunders, 1896: 18 [Poneridae]; Ashmead, 1905b: 382 [Poneridae]; Novák & Sadil, 1941: 70 [Poneridae]; Bernard, 1951: 1042 [Poneridae]; Bernard, 1953b: 185 [Poneridae].
- Ponerinae as tribe of Formicidae: André, 1874: 167 [Poneridae].
- Ponerinae as subfamily of Poneridae: Ashmead, 1905b: 382.
- Ponerinae as subfamily of Formicidae: Mayr, 1855: 289, 299 [Poneridae]; Mayr, 1861: 21 [Poneridae]; Mayr, 1862: 712 [Poneridae]; Smith, F. 1857a: 64 [Poneridae]; Smith, F. 1862b: 31 [Poneridae]; Mayr, 1865: 11 [Poneridae]; Mayr, 1868b: 24 [Poneridae]; Forel, 1870: 307 [Poneridae]; Forel, 1874: 21 [Poneridae]; Emery, 1877a: 70 [Poneridae]; Forel, 1878: 366 [Poneridae]; Emery & Forel, 1879a: 455 [Poneridae]; André, 1881b: 64 [Poneridae]; Forel, 1892j: 220 [Poneridae]; Dalla Torre, 1893: 13; Forel, 1893a: 162 [Ponerinae]; Forel, 1895b: 111 [Poneridae]; Nasonov, 1889: 27 [Poneridae]; Emery, 1895j: 766 [subfamily spelled Ponerini]; Emery, 1896e: 176; Forel, 1899c: 2; Emery, 1901a: 36; Bingham, 1903: 23; Ruzsky, 1905b: 174; Wheeler, W.M. 1910g: 134; Emery, 1911d: 2; Wheeler, 1915g: 805 [Ponerides]; Donisthorpe, 1915d: 65; Wheeler, W.M. 1915h: 25; Arnold, 1915: 9; Escherich, 1917: 2 [Ponerini]; Forel, 1917: 235; Bondroit, 1918: 78 [Poneritae]; Wheeler, W.M. 1920: 53; Wheeler, W.M. 1922a: 56, 632, 640; Borgmeier, 1923: 37; Karavaiev, 1934: 49; Clark, 1951: 15; Brown, 1954e: 24; Wheeler, G.C. & Wheeler, J. 1972a: 39; Brown, 1973b: 165; subsequent authors.
- Ponerinae as poneromorph subfamily of Formicidae: Bolton, 2003: 42, 156.
- Ponerinae as poneroid subfamily of Formicidae: Ouellette, et al. 2006: 365; Brady, et al. 2006: 18173; Moreau, et al. 2006: 102; Ward, 2007a: 555; Schmidt, C.A. & Shattuck, 2014: 46.
Taxonomic References
Smith, F. 1858b: 76 (diagnosis); Mayr, 1862: 712 (genera key); Mayr, 1865: 11 (Odontomachidae, Poneridae diagnoses), Mayr, 1867a: 79, 81 (Odontomachidae, Poneridae diagnoses); Forel, 1878: 366 (diagnosis); Dalla Torre, 1893: 13 (catalogue); Emery, 1895j: 766 (diagnosis); Emery, 1896e: 176 (genera key); Handlirsch, 1907: 879 (*fossil taxa catalogue); Wheeler, W.M. 1910g: 134 (diagnosis); Emery, 1911d: 3 (diagnosis, tribes key); Forel, 1917: 235 (synoptic classification); Forel, 1921c: 133 (diagnosis); Wheeler, W.M. 1922a: 56, 636 (diagnosis, tribes key); Brown & Nutting, 1950: 124 (venation, phylogeny); Brown, 1954e: 24 (phylogeny); Eisner, 1957: 475 (proventriculus morphology); Bernard, 1967: 79 (diagnosis); Gotwald, 1969: 25 (mouthparts morphology); Wheeler, G.C. & Wheeler, J. 1972a: 39 (diagnosis); Brown, 1973b: 165 (genera, distribution); Wheeler, G.C. & Wheeler, J. 1976b: 48 (larvae, review and synthesis); Snelling, R.R. 1981: 387 (synoptic classification); Wheeler, G.C. & Wheeler, J. 1985: 256 (synoptic classification); Billen, 1986: 168 (Dufour's gland); Fanfani & Dazzini Valcurone, 1986: 115 (exocrine glands synopsis); Dlussky & Fedoseeva, 1988: 78 (synoptic classification); Hölldobler & Wilson, 1990: 9 onward (synoptic classification, genera keys); Baroni Urbani, et al. 1992: 317 (phylogeny); Bolton, 1994: 153 (diagnosis, synoptic classification, genera keys); Bolton, 1995a: 1042 (census); Bolton, 1995b: 14 (catalogue); Grimaldi, et al. 1997: 20 (*Cretaceous genera); Dlussky & Rasnitsyn, 2002: 422 (diagnosis for wingless fossils); Bolton, 2003: 42, 156 (diagnosis, synopsis); Ouellette, et al. 2006: 359 (phylogeny); Brady, et al. 2006: 18173 (phylogeny); Moreau, et al. 2006: 102 (phylogeny); Ward, 2007a: 555 (classification); Keller, 2011: 1 (morphology, phylogeny); Schmidt, C. 2013: 201 (molecular, phylogeny); Schmidt, C.A. & Shattuck, 2014: 18, 24, 36 (revision of world genera, keys to New World, Afrotropical and Malagasy, Eurasian and Australian); Boudinot, 2015: 47 (diagnosis).
Regional and National Faunas with Keys
Mayr, 1861: 28 (Europe); Mayr, 1868b: 69 (*Baltic Amber); André, 1874: 170 (Europe); Forel, 1874: 29 (Switzerland); André, 1882b: 227 (Europe and Algeria); Cresson, 1887: 97 (U.S.A., genera); Provancher, 1887: 238 (Canada); Nasonov, 1889: 54 (Russia); Forel, 1891b: 9 (Madagascar genera); Forel, 1900c: 52 (India and Sri Lanka); Bingham, 1903: 23 (India, Sri Lanka and Burma); Ruzsky, 1905b: 108 (Russian Empire); Wheeler, W.M. 1910g: 557 (North America genera); Bondroit, 1910: 489 (Belgium); Stitz, 1914: 54 (Central Europe); Gallardo, 1915: 31 (Argentina genera); Forel, 1915d: 6 (Switzerland); Arnold, 1915: 10 (South Africa); Donisthorpe, 1915d: 65 (Britain); Emery, 1916b: 98 (Italy); Wheeler, W.M. 1916m: 580 (U.S.A., Connecticut); Bondroit, 1918: 79 (France and Belgium); Gallardo, 1918b: 4 (Argentina); Soudek, 1922: 18 (Czechoslovakia); Stärcke, 1926: 82 (Netherlands); Donisthorpe, 1927b: 68 (Britain); Menozzi & Russo, 1930: 169 (Dominican Republic); Arnol'di, 1933b: 596 (Russia); Karavaiev, 1934: 50 (Ukraine); Smith, M.R. 1937: 823 (Puerto Rico); Stitz, 1939: 58 (Germany); Smith, M.R. 1943f: 278 (U.S.A. males); Buren, 1944a: 279 (U.S.A., Iowa); Smith, M.R. 1947f: 530 (U.S.A. genera); Creighton, 1950a: 31 (Nearctic); Kusnezov, 1956: 11 (Argentina); Brown, 1958h: 11 (New Zealand); Gregg, 1963: 280 (U.S.A., Colorado); Bernard, 1967: 80 (Western Europe); Wilson & Taylor, 1967: 10 (Polynesia); Kempf, 1972a: 262 (Neotropical synoptic classification); Bolton, 1973a: 323 (West Africa genera); Bolton & Collingwood, 1975: 3 (Britain); van Boven, 1977: 66 (Belgium); Kutter, 1977c: 21 (Switzerland); Arnol'di & Dlussky, 1978: 522 (former European U.S.S.R.); Collingwood, 1978: 74 (Iberian Peninsula); Collingwood, 1979: 29 (Fennoscandia and Denmark); Greenslade, 1979: 14 (South Australia genera); Francoeur, 1979: 30 (Canada, Québec); Schembri & Collingwood, 1981: 417 (Malta); Allred, 1982: 438 (U.S.A., Utah); Baroni Urbani, 1984: 75 (Neotropical genera); Collingwood, 1985: 236 (Saudi Arabia); Wheeler, G.C. & Wheeler, J. 1986g: 17 (U.S.A., Nevada); Agosti & Collingwood, 1987b: 264 (Balkans); Ogata, 1987: 101 (Japan genera); Morisita, et al. 1989: 8 (Japan); Dlussky, et al. 1990: 173 (Turkmenistan); Kupyanskaya, 1990: 85 (Far Eastern Russia); Atanasov & Dlussky, 1992: 51 (Bulgaria); Lattke, in Jaffe, 1993: 166 (Neotropical genera); Arakelian, 1994: 10 (Armenia); Wu, J. & Wang, 1995: 31 (China genera); Collingwood & Agosti, 1996: 308 (Saudi Arabia); Seifert, 1996b: 107 (Central Europe); Collingwood & Prince, 1998: 10 (Portugal); Kim, et al. 1998: 145 (Korea); Shattuck, 1999: 52, 179 (Australia genera synopsis); Andersen, 2000: 19 (northern Australia genera); Zhou, 2001b: 22 (China, Guangxi); Czechowski, et al. 2002: 133 (Poland); Aktaç & Radchenko, 2002: 53 (Turkey genera); Yoshimura & Onoyama, 2002: 436 (Japan genera, males); Mackay & Mackay, 2002: 27 (U.S.A., New Mexico); Csösz, 2003: 147 (Carpathian Basin); Palacio & Fernández, in Fernández, 2003d: 256 (Neotropical genera); Radchenko, 2005b: 184 (North Korea); Coovert, 2005: 23 (U.S.A., Ohio); Yoshimura & Fisher, 2007: 27 (Malagasy genera, males); Clouse, 2007b: 190 (Micronesia); Seifert, 2007: 108 (North and Central Europe); Bolton & Fisher, 2008c: 32 (Afrotropical genera); Fernández & Arias-Penna, 2008: 32 (Neotropical genera); Dlussky, 2009: 1071 (Eocene amber); Terayama, 2009: 101 (Taiwan genera); Heterick, 2009: 34 (south-western Australia genera); Boer, 2010: 68 (Benelux); Czechowski, et al. 2012: 340 (Poland); General & Alpert, 2012: 76 (Philippines genera key) ; Dlussky & Perfilieva, 2014: 433 (British Eocene species key); Baccaro, et al. 2015: 108, 310 (Brazil genera key, text); Lattke, in Delabie, et al. 2015: 55 (Brazil genera, phylogeny, taxonomy); Fisher & Bolton, 2016: 52 (diagnosis).
Taxonomic Notes
Schmidt and Shattuck (2012) - The following formal diagnosis for Ponerinae is adapted from Bolton (2003): Torulus fused to frontal lobe. Antenna with 12 segments (13 in males). Lateral margins of frontal lobes form short semicircles or blunt triangles, with a pinched-in appearance posteriorly. Promesonotal suture flexible. Metapleural gland orifice without a dorsal cuticular flange or flap. Propodeal lobes present. Petiole (A2) distinctly separated posteriorly from A3 and with only a narrow attachment to it. Petiole without tergosternal fusion. A3 continuous with the remainder of the gaster. A3 and A4 with tergosternal fusion. A4 with presclerites and usually a girdling constriction between pre- and postsclerites. Spiracles of A5–A7 concealed by posterior margins of preceding tergites. Sting present and strongly developed.
Ponerines are most readily identified by the following combination of traits: toruli fused to frontal lobes, frontal lobes prominent and with a pinched-in appearance posteriorly, waist formed of a single segment (petiole, A3) which attaches narrowly to the undifferentiated postpetiole (A4), petiole without tergosternal fusion, and sting present and well-developed. The identity of ponerine synapomorphies is uncertain. Bolton (2003) gave the complete fusion of the toruli to the frontal lobes as an autapomorphy of Ponerinae, but noted the presence of similar fusion (to various degrees) among some members of Amblyoponinae. Bolton also listed the characteristic shape of the frontal lobes in Ponerinae as synapomorphic for the subfamily, but similar frontal lobe structure occurs in many amblyoponines (pers. observation). Given the close but incompletely resolved relationship between Ponerinae and Amblyoponinae, we consider the ancestral condition of these characteristics (torular fusion and frontal lobe shape) to be ambiguous within the poneroid clade and are therefore hesitant to treat them as apomorphies of Ponerinae.
We tentatively recognize the loss of tergosternal fusion of the petiole as a possible synapomorphy of Ponerinae. Bolton (2003) treated the absence of petiolar tergosternal fusion as plesiomorphic within Formicidae, but recent molecular phylogenies (Moreau et al., 2006; Brady et al., 2006; Rabeling et al., 2008; Schmidt, 2013) suggest that the ancestral ant may have had a fused petiole. The phylogenetic distribution of this character implies that Ponerinae secondarily lost tergosternal fusion of the petiole, though this interpretation depends on the phylogenetic rooting of Formicidae and could conceivably be symplesiomorphic, with repeated evolution of a fused petiole in other poneroid lineages.
References
- Bolton, B. 2003. Synopsis and classification of Formicidae. Mem. Amer. Entomol. Inst. 71:1-370.
- Borowiec, M.L., Moreau, C.S., Rabeling, C. 2020. Ants: Phylogeny and Classification. In: C. Starr (ed.), Encyclopedia of Social Insects (doi:10.1007/978-3-319-90306-4_155-1).
- Boudinot, B.E. 2015. Contributions to the knowledge of Formicidae (Hymenoptera, Aculeata): a new diagnosis of the family, the first global male-based key to subfamilies, and a treatment of early branching lineages. European Journal of Taxonomy. 120:1-62. (http://dx.doi.org/10.5852/ejt.2015.120).
- Fernandes, I.O., Souza, J.L.P., Fernandez, F., Delabie, J.H.C. and Schultz, T.R. 2015. A new species of Simopelta (Hymenoptera: Formicidae: Ponerinae) from Brazil and Costa Rica. Zootaxa. 3956:295–300. doi:10.11646/zootaxa.3956.2.10
- Schmidt, C.A. & Shattuck, S.O. 2014. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa. 3817:1–242. (doi:10.11646/zootaxa.3817.1.1)
- Xiong, Z., He, D., Guang, X., Li, Q. 2023. Novel tRNA gene rearrangements in the mitochondrial genomes of poneroid ants and phylogenetic implication of Paraponerinae (Hymenoptera: Formicidae). Life 1310, 2068 (doi:10.3390/life13102068).
- Pages using DynamicPageList3 parser function
- Articles using diversity taxobox
- Aix-en-Provence, France fossil
- Oligocene
- Baltic amber fossil
- Eocene
- Bembridge Marls fossil
- Bitterfeld amber fossil
- Bolshaya Svetlovodnaya fossil
- Dominican amber fossil
- Miocene
- Florissant fossil
- Foulden Maar diatomite fossil
- Fushun amber fossil
- Green River Formation fossil
- Kishenehn Formation shale fossil
- Kleinkems, Germany fossil
- Kuban Province fossil
- Malyi Kamyshlak fossil
- Messel fossil
- Most Formation fossil
- Oise amber fossil
- Orapa fossil
- Cretaceous
- Radoboj fossil
- Rott, Germany fossil
- Rovno amber fossil
- Sakhalin amber fossil
- Paleocene
- Shanwang, China fossil
- Sicilian amber fossil
- Vishnevaya Balka Creek fossil
- Subfamily
- Extant subfamily
- Ponerinae