Difference between revisions of "Solenopsis invicta"

AntWiki: The Ants --- Online
Jump to navigation Jump to search
m (Add references from PDF.)
 
(49 intermediate revisions by the same user not shown)
Line 125: Line 125:
  
 
====Strepsiptera====
 
====Strepsiptera====
*{{Associate|Relationship = host|Associate Type = strepsipteran|Associate Type Link = Parasites and Parasitoids|Associate Taxon = ''Caenocholax fenyesi''|Associate Taxon Link = |Associate Relationship = parasite|Associate Relationship Link =Parasites and Parasitoids|Locality = |Source = Cook, 2019|Notes =|Inline = }}
+
*{{Associate|Relationship = host|Associate Type = strepsipteran|Associate Type Link = Parasites and Parasitoids|Associate Taxon = ''Caenocholax fenyesi''|Associate Taxon Link = |Associate Relationship = parasite|Associate Relationship Link =Parasites and Parasitoids|Locality = United States (Texas)|Source = Kathirithamby & Johnston, 1992; Cook, 2019|Notes =|Inline = }}
  
 
====Gregarine====
 
====Gregarine====
Line 336: Line 336:
 
==Nomenclature==
 
==Nomenclature==
 
{{Nomenclature}}
 
{{Nomenclature}}
*''wagneri. Solenopsis saevissima'' var. ''wagneri'' Santschi, 1916e: 380 (w.) ARGENTINA. Junior synonym of ''saevissima'': Wilson, 1952b: 55. Revived from synonymy, raised to species and senior synonym of ''invicta'': Bolton, 1995b: 391. [Trager, 1991: 173 wrongly gave ''wagneri'' as an unavailable name, incorrectly citing its original notation as ''S. saevissima'' subsp. ''electra'' var. ''wagneri'', and referring its material to ''invicta''. But ''wagneri'' is available, with the original notation cited above, and has priority over ''invicta''.] ''S. invicta'' conserved over ''wagneri'' because of usage, in accord with ICZN (1999): Shattuck, Porter & Wojcik, 1999: 27.
+
*''{{RedText|invicta}}. Solenopsis invica'' Buren, 1972: 9, fig. 2 (w.q.m.) BRAZIL (Mato Grosso), U.S.A. (Alabama).
*''<span style='color:red;font-weight:bold;'>invicta.</span> Solenopsis invicta'' Buren, 1972: 9, fig. 2 (w.q.m.) BRAZIL. Wheeler, G.C. & Wheeler, J. 1977: 588 (l.). Junior synonym of ''wagneri'': Bolton, 1995b: 388. [Trager, 1991: 173 incorrectly gave ''wagneri'' as an unavailable name; the name is available and has priority over ''invicta'', see note under ''wagneri''.] ''S. invicta'' conserved over ''wagneri'' because of usage, in accord with ICZN (1999): Shattuck, Porter & Wojcik, 1999: 27. See also: Rhoades, 1977: 1; Smith, D.R. 1979: 1386.
+
**[Note: the misspelling ''invica'' occurs in the title of the species, but the name is spelled correctly, invicta, on previous pages 1-8, as well as on subsequent pages and in figure captions.]
 +
**Type-material: holotype worker, paratype workers (number not stated).
 +
**Type-locality: Brazil: Mato Grosso, Cuiaba, 16.ii.1971 (''W. Whitcomb & R. Williams''); paratypes: workers “numerous” with same data, workers “several additional colonies”, ii.1971 (''W. Whitcomb & R. Williams''), 10 workers Mato Grosso, Chapada (no collector’s name), workers (number not stated) U.S.A.: Alabama, Daphne (''W.F. Buren''), Alabama, nr Mobile (''W.F. Buren'').
 +
**Type-depositories: USNM (holotype); FSCG, MCZC, UGAA, USNM (paratypes).
 +
**Wheeler, G.C. & Wheeler, J. 1977a: 588 (l.).
 +
**Junior synonym of ''wagneri'': Bolton, 1995b: 388.
 +
**[Note: Trager, 1991: 173, cited ''wagneri'' as an unavailable (infrasubspecific) name, but the name was available and had priority over ''invicta'' (see under ''wagneri''). S. ''invicta'' was later conserved over ''wagneri'' because of usage, in accord with ICZN (1999): Shattuck, Porter & Wojcik, 1999: 27.]
 +
**Status as species: Rhoades, 1977: 1; Smith, D.R. 1979: 1386; Deyrup, ''et al''. 1989: 96; Brandão, 1991: 378; Trager, 1991: 173 (redescription); Deyrup, ''et al''. 2000: 298; Mackay & Mackay, 2002: 229; Deyrup, 2003: 47; MacGown & Forster, 2005: 70; Ward, 2005: 36; Wild, 2007b: 36; Don, 2007: 198; Terayama, 2009: 157; Guénard & Dunn, 2012: 53; Wetterer, 2013c: 50; Bezděčková, ''et al''. 2015: 122; Deyrup, 2017: 105; Pitts, ''et al''. 2018: 343 (redescription).
 +
**Distribution: Anguilla, Antigua, Argentina, Aruba, Bahamas, Barbuda, Bolivia, Brazil, Cayman Is, Jamaica, Paraguay, Peru, Puerto Rico, St Kitts, St Martin, Montserrat, Nevis, Trinidad, Uruguay, U.S.A., Virgin Is
 +
**[Note: also as introduction in Australia, China, Japan, New Zealand, Philippines, Taiwan.]
 +
*''wagneri. Solenopsis saevissima'' var. ''wagneri'' Santschi, 1916e: 380 (w.) ARGENTINA (Santiago del Estero).
 +
**Type-material: syntype workers (number not stated).
 +
**Type-locality: Argentina: Santiago del Estero, vic. Icañu (''E.R. Wagner'').
 +
**Type-depository: NHMB.
 +
**As unavailable (infrasubspecific) name: Emery, 1922e: 198; Creighton, 1930b: 94.
 +
**Subspecies of ''saevissima'': Santschi, 1919f: 43; Santschi, 1923c: 266.
 +
**Junior synonym of ''saevissima'': Wilson, 1952b: 55; Kempf, 1972a: 239.
 +
**Status as species: Bolton, 1995b: 391.
 +
**Senior synonym of ''invicta'': Bolton, 1995b: 391.
 +
**[Note: Trager, 1991: 173, cited ''wagneri'' as an unavailable (infrasubspecific) name (incorrectly citing its original notation as ''S. saevissima'' subsp. ''electra'' var. ''wagneri''), and referred the material to ''invicta''. But ''wagneri'' was available, with the original notation cited above, and had priority over ''invicta''. S. ''invicta'' was later conserved over ''wagneri'' because of usage, in accord with ICZN (1999): Shattuck, Porter & Wojcik, 1999: 27.]
  
 
===Type Material===
 
===Type Material===
Line 541: Line 560:
 
*[[Media:Adams, R.M.M., Wells, R.L. et al. 2020. Interspecific eavesdropping (10.3389@fevo.2020.00024).pdf|Adams, R.M.M., Wells, R.L., Yanoviak, S.P., Frost, C.J., Fox, E.G.P. 2020. Interspecific Eavesdropping on Ant Chemical Communication. Frontiers in Ecology and Evolution 8.]] ({{doi|10.3389/fevo.2020.00024}}).
 
*[[Media:Adams, R.M.M., Wells, R.L. et al. 2020. Interspecific eavesdropping (10.3389@fevo.2020.00024).pdf|Adams, R.M.M., Wells, R.L., Yanoviak, S.P., Frost, C.J., Fox, E.G.P. 2020. Interspecific Eavesdropping on Ant Chemical Communication. Frontiers in Ecology and Evolution 8.]] ({{doi|10.3389/fevo.2020.00024}}).
 
*[[Media:Ajayi, O.S., Appel, A.G. et al. 2020. Comparative cutaneous water loss and desiccation tolerance (10.3390@insects11070418).pdf|Ajayi, O.S., Appel, A.G., Chen, L., Fadamiro, H.Y. 2020. Comparative Cutaneous Water Loss and Desiccation Tolerance of Four Solenopsis spp. (Hymenoptera: Formicidae) in the Southeastern United States. Insects 11, 418.]] ({{doi|10.3390/INSECTS11070418}}).
 
*[[Media:Ajayi, O.S., Appel, A.G. et al. 2020. Comparative cutaneous water loss and desiccation tolerance (10.3390@insects11070418).pdf|Ajayi, O.S., Appel, A.G., Chen, L., Fadamiro, H.Y. 2020. Comparative Cutaneous Water Loss and Desiccation Tolerance of Four Solenopsis spp. (Hymenoptera: Formicidae) in the Southeastern United States. Insects 11, 418.]] ({{doi|10.3390/INSECTS11070418}}).
 +
*[[Media:Albuquerque, E., Prado, L. et al. 2021. Ants of the State of Pará, Brazil (10.11646@zootaxa.5001.1.1).pdf|Albuquerque, E., Prado, L., Andrade-Silva, J., Siqueira, E., Sampaio, K., Alves, D., Brandão, C., Andrade, P., Feitosa, R., Koch, E., Delabie, J., Fernandes, I., Baccaro, F., Souza, J., Almeida, R., Silva, R. 2021. Ants of the State of Pará, Brazil: a historical and comprehensive dataset of a key biodiversity hotspot in the Amazon Basin. Zootaxa 5001, 1–83]]]] ({{doi|10.11646/zootaxa.5001.1.1}}).
 
*[[Media:Alvarez-Blanco, P., Broggi, J. et al. 2020. Breeding consequences for a songbird (10.1007@s10530-020-02297-3).pdf|Alvarez-Blanco, P., Broggi, J., Cerdá, X., González-Jarri, O., Angulo, E. 2020. Breeding consequences for a songbird nesting in Argentine ant’ invaded land. Biological Invasions 22, 2883–2898.]] ({{doi|10.1007/S10530-020-02297-3}}).
 
*[[Media:Alvarez-Blanco, P., Broggi, J. et al. 2020. Breeding consequences for a songbird (10.1007@s10530-020-02297-3).pdf|Alvarez-Blanco, P., Broggi, J., Cerdá, X., González-Jarri, O., Angulo, E. 2020. Breeding consequences for a songbird nesting in Argentine ant’ invaded land. Biological Invasions 22, 2883–2898.]] ({{doi|10.1007/S10530-020-02297-3}}).
 +
*[[Media:Anderson, C., McShea, D.W. 2001. Intermediate-level parts in insect societies (10.1007@PL00001781).pdf|Anderson, C., McShea, D.W. 2001. Intermediate-level parts in insect societies: adaptive structures that ants build away from the nest. Insectes Sociaux 48, 291–301]] ({{doi|10.1007/pl00001781}}).
 +
*[[Media:Andriolli, F.S., Ishikawa, N.K. et al. 2019. Do zombie ant fungi turn their hosts into light seekers (10.1093@beheco@ary198).pdf|Andriolli, F.S., Ishikawa, N.K., Vargas-Isla, R., Cabral, T.S., de Bekker, C., Baccaro, F.B. 2019. Do zombie ant fungi turn their hosts into light seekers? Behavioral Ecology 30, 609–616]] ({{doi|10.1093/beheco/ary198}}).
 
*[[Media:Armitage, S., Boomsma, J. et al. 2010. Diploid male production in a leaf-cutting ant (10.1111@j.1365-2311.2009.01167.x).pdf|Armitage, S., Boomsma, J., Bear, B. 2010. Diploid male production in a leaf-cutting ant. Ecological Entomology 35, 175–182]] ({{doi|10.1111/j.1365-2311.2009.01167.x}}).
 
*[[Media:Armitage, S., Boomsma, J. et al. 2010. Diploid male production in a leaf-cutting ant (10.1111@j.1365-2311.2009.01167.x).pdf|Armitage, S., Boomsma, J., Bear, B. 2010. Diploid male production in a leaf-cutting ant. Ecological Entomology 35, 175–182]] ({{doi|10.1111/j.1365-2311.2009.01167.x}}).
 
*[[Media:Arsenault, S.V., King, J.T. et a;. 2020. Simple inheritance, complex regulation (10.1111@mec.15581).pdf|Arsenault, S.V., King, J.T., Kay, S., Lacy, K.D., Ross, K.G., Hunt, B.G. 2020. Simple inheritance, complex regulation: Supergene‐mediated fire ant queen polymorphism. Molecular Ecology 29, 3622–3636]] ({{doi|10.1111/mec.15581}}).
 
*[[Media:Arsenault, S.V., King, J.T. et a;. 2020. Simple inheritance, complex regulation (10.1111@mec.15581).pdf|Arsenault, S.V., King, J.T., Kay, S., Lacy, K.D., Ross, K.G., Hunt, B.G. 2020. Simple inheritance, complex regulation: Supergene‐mediated fire ant queen polymorphism. Molecular Ecology 29, 3622–3636]] ({{doi|10.1111/mec.15581}}).
 
*[[Media:Ascunce, M.S., Valles, S.M. et al. 2010. Molecular diversity of the microsporidium Kneallhazia solenopsae reveals an expanded host range.pdf|Ascunce, M.S., Valles, S.M., Oi, D.H., Shoemaker, D., Plowes, R., Gilbert, L., LeBrun, E.G., Sanchez-Arroyo, H. & Sanchez-Peña, S. 2010. Molecular diversity of the microsporidium ''Kneallhazia solenopsae'' reveals an expanded host range among fire ants in North America. Journal of Invertebrate Pathology, 105(3), 279–288 (DOI 10.1016/j.jip.2010.07.008).]]
 
*[[Media:Ascunce, M.S., Valles, S.M. et al. 2010. Molecular diversity of the microsporidium Kneallhazia solenopsae reveals an expanded host range.pdf|Ascunce, M.S., Valles, S.M., Oi, D.H., Shoemaker, D., Plowes, R., Gilbert, L., LeBrun, E.G., Sanchez-Arroyo, H. & Sanchez-Peña, S. 2010. Molecular diversity of the microsporidium ''Kneallhazia solenopsae'' reveals an expanded host range among fire ants in North America. Journal of Invertebrate Pathology, 105(3), 279–288 (DOI 10.1016/j.jip.2010.07.008).]]
 +
*[[Media:Ataya, H., Lenoir, A. 1984. Le comportement necrophorique chez la formi Lasius niger.pdf|Ataya, H., Lenoir, A. 1984. Le comportement necrophorique chez la formi ''Lasius niger'' L. Insectes Sociaux 31: 20-33.]]
 +
*[[Media:Baer, B. 2011. The copulation biology of ants.pdf|Baer, B. 2011. The copulation biology of ants (Hymenoptera: Formicidae). Myrmecological News 14: 55-68.]]
 
*[[Media:Baker, A.J., Heraty, J.M.et al. 2019. Inverse dispersal patterns in a group of ant parasitoids.pdf|Baker, A.J., Heraty, J.M., Mottern, J., Hang, J.Z., Hines, H.M., Lemmon, A.R., Lemmon, E.M. 2019. Inverse dispersal patterns in a group of ant parasitoids (Hymenoptera: Eucharitidae: Oraseminae) and their ant hosts. Systematic Entomology 45: 1–19]] ({{doi|10.1111/syen.12371}}).
 
*[[Media:Baker, A.J., Heraty, J.M.et al. 2019. Inverse dispersal patterns in a group of ant parasitoids.pdf|Baker, A.J., Heraty, J.M., Mottern, J., Hang, J.Z., Hines, H.M., Lemmon, A.R., Lemmon, E.M. 2019. Inverse dispersal patterns in a group of ant parasitoids (Hymenoptera: Eucharitidae: Oraseminae) and their ant hosts. Systematic Entomology 45: 1–19]] ({{doi|10.1111/syen.12371}}).
 
*[[Media:Barsagade, D.D., Tembhare, D.B. et al. 2013. Microscopic structure of antennal sensilla in the carpenter ant Camponotus compressus.pdf|Barsagade, D.D., Tembhare, D.B., Kadu, S.G. 2013. Microscopic structure of antennal sensilla in the carpenter ant Camponotus compressus (Fabricius) (Formicidae: Hymenoptera). Asian Myrmecology 5, 113-120.]]
 
*[[Media:Barsagade, D.D., Tembhare, D.B. et al. 2013. Microscopic structure of antennal sensilla in the carpenter ant Camponotus compressus.pdf|Barsagade, D.D., Tembhare, D.B., Kadu, S.G. 2013. Microscopic structure of antennal sensilla in the carpenter ant Camponotus compressus (Fabricius) (Formicidae: Hymenoptera). Asian Myrmecology 5, 113-120.]]
 
*[[Media:Bates, O.K., Ollier, S. et al. 2020. Smaller climatic niche shifts in invasive than non-invasive alien ant species (10.1038@s41467-020-19031-1).pdf|Bates, O.K., Ollier, S., Bertelsmeier, C. 2020. Smaller climatic niche shifts in invasive than non-invasive alien ant species. Nature Communications 11, 5213.]] ({{doi|10.1038/s41467-020-19031-1}}).
 
*[[Media:Bates, O.K., Ollier, S. et al. 2020. Smaller climatic niche shifts in invasive than non-invasive alien ant species (10.1038@s41467-020-19031-1).pdf|Bates, O.K., Ollier, S., Bertelsmeier, C. 2020. Smaller climatic niche shifts in invasive than non-invasive alien ant species. Nature Communications 11, 5213.]] ({{doi|10.1038/s41467-020-19031-1}}).
 +
*[[Media:Baty, J.W., Bulgarella, M. et al. 2020. Viruses and their effects in ants (10.25849@myrmecol.news_030-213).pdf|Baty, J.W., Bulgarella, M., Dobelmann, J., Felden, A., Lester, P.J. 2020. Viruses and their effects in ants (Hymenoptera: Formicidae). Myrmecological News 30: 213-228]] ({{doi|10.25849/MYRMECOL.NEWS_030:213}}).
 
*[[Media:Beckers, R., Goss, S. et al. 1898. Colony size, communication and ant foraging strategy.pdf|Beckers R., Goss, S., Deneubourg, J.L., Pasteels, J.M. 1989. Colony size, communication and ant foraging Strategy. Psyche 96: 239-256]] ({{doi|10.1155/1989/94279}}).
 
*[[Media:Beckers, R., Goss, S. et al. 1898. Colony size, communication and ant foraging strategy.pdf|Beckers R., Goss, S., Deneubourg, J.L., Pasteels, J.M. 1989. Colony size, communication and ant foraging Strategy. Psyche 96: 239-256]] ({{doi|10.1155/1989/94279}}).
 +
*[[Media:Beresford, J. 2021. The role of hybrids in the process of speciation.pdf|Beresford, J. 2021. The role of hybrids in the process of speciation; a study of naturally occurring ''Formica'' wood ant hybrids. Academic Dissertation, University of Helsinki.]]
 
*[[Media:Bertelsmeier, C. 2021. Globalization and the anthropogenic spread of invasive social insects (10.1016@j.cois.2021.01.006).pdf|Bertelsmeier, C. 2021. Globalization and the anthropogenic spread of invasive social insects. Current Opinion in Insect Science 46, 16–23.]] ({{doi|10.1016/j.cois.2021.01.006}}).
 
*[[Media:Bertelsmeier, C. 2021. Globalization and the anthropogenic spread of invasive social insects (10.1016@j.cois.2021.01.006).pdf|Bertelsmeier, C. 2021. Globalization and the anthropogenic spread of invasive social insects. Current Opinion in Insect Science 46, 16–23.]] ({{doi|10.1016/j.cois.2021.01.006}}).
 
*[[Media:Berton, F., Lenoir, A., Newbahari, E., Barreau, S. 1991. Ontogeny of queen attraction to workers in the ant Cataglyphis cursor.pdf|Berton, F., Lenoir, A., Newbahari, E., Barreau, S. 1991. Ontogeny of queen attraction to workers in the ant ''Cataglyphis cursor'' (Hymenoptera: Formicidae). Insectes Sociaux 38: 293-305.]]
 
*[[Media:Berton, F., Lenoir, A., Newbahari, E., Barreau, S. 1991. Ontogeny of queen attraction to workers in the ant Cataglyphis cursor.pdf|Berton, F., Lenoir, A., Newbahari, E., Barreau, S. 1991. Ontogeny of queen attraction to workers in the ant ''Cataglyphis cursor'' (Hymenoptera: Formicidae). Insectes Sociaux 38: 293-305.]]
 +
*[[Media:Bhattacharyya, K., Annagiri, S. 2019. Characterization of nest architecture of an Indian ant Diacamma indicum (10.1093@jisesa@iez083).pdf|Bhattacharyya, K., Annagiri, S. 2019. Characterization of nest architecture of an Indian ant ''Diacamma indicum'' (Hymenoptera: Formicidae). Journal of Insect Science 19, 9]] ({{doi|10.1093/jisesa/iez083}}).
 +
*[[Media:Billen, J. 2019. Hormigas de Colombia. Cap. 7. Diversidad y morphologia de las glandulas exocrinas.pdf|Billen, J.P.J. 2019. Diversidad y morfología de las glándulas exocrinas en las hormigas. Pp. 165-174 in: Fernández, F., Guerrero, R.J., Delsinne, T. (eds.) 2019d. Hormigas de Colombia. Bogotá: Universidad Nacional de Colombia, 1198 pp.]]
 +
*[[Media:Bordoni, A., Matejkova, Z. et al. 2019. Home economics in an oak gall (10.1007@s00114-019-1659-0).pdf|Bordoni, A., Matejkova, Z., Chimenti, L., Massai, L., Perito, B., Dapporto, L., Turillazzi, S. 2019. Home economics in an oak gall: behavioural and chemical immune strategies against a fungal pathogen in ''Temnothorax'' ant nests. The Science of Nature 106, 61]] ({{doi|10.1007/s00114-019-1659-0}}).
 +
*[[Media:Borowiec, M.L., Moreau, C.S. et al. 2020. Ants - phylogeny and classification (10.1007@978-3-319-90306-4_155-1).pdf|Borowiec, M.L., Moreau, C.S., Rabeling, C. 2020. Ants: Phylogeny and Classification. In: C. Starr (ed.), Encyclopedia of Social Insects]] ({{doi|10.1007/978-3-319-90306-4_155-1}}).
 
*[[Media:Boulay, R., Galarza, J. et al. 2010. Intraspecific competition affects population size and resource allocation.pdf|Boulay, R., Galarza, J. et al. 2010. Intraspecific competition affects population size and resource allocation in an ant dispersing by colony fission. Ecology, 91(11), 3312–3321.]]
 
*[[Media:Boulay, R., Galarza, J. et al. 2010. Intraspecific competition affects population size and resource allocation.pdf|Boulay, R., Galarza, J. et al. 2010. Intraspecific competition affects population size and resource allocation in an ant dispersing by colony fission. Ecology, 91(11), 3312–3321.]]
 
*[[Media:Boulay, R., Hefetz, A. et al. 2007. Production of sexuals in a fission-performing ant (10.1007@s00265-007-0385-3).pdf|Boulay, R., Hefetz, A., Cerdá, X., Devers, S., Francke, W., Twele, R., Lenoir, A. 2007. Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size. Behavioral Ecology and Sociobiology 61, 1531–1541]] ({{doi|10.1007/S00265-007-0385-3}}).
 
*[[Media:Boulay, R., Hefetz, A. et al. 2007. Production of sexuals in a fission-performing ant (10.1007@s00265-007-0385-3).pdf|Boulay, R., Hefetz, A., Cerdá, X., Devers, S., Francke, W., Twele, R., Lenoir, A. 2007. Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size. Behavioral Ecology and Sociobiology 61, 1531–1541]] ({{doi|10.1007/S00265-007-0385-3}}).
 
*[[Media:Boulay, R., Hefetz, A. et al. 2000. Camponotus fellah colony integration (10.1006@anbe.2000.1408,).pdf|Boulay, R., Hefetz, A., Soroker, V., Lenoir, A. 2000. ''Camponotus fellah'' colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Animal Behaviour 59, 1127–1133]] ({{doi|10.1006/ANBE.2000.1408}}).
 
*[[Media:Boulay, R., Hefetz, A. et al. 2000. Camponotus fellah colony integration (10.1006@anbe.2000.1408,).pdf|Boulay, R., Hefetz, A., Soroker, V., Lenoir, A. 2000. ''Camponotus fellah'' colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Animal Behaviour 59, 1127–1133]] ({{doi|10.1006/ANBE.2000.1408}}).
 
*[[Media:Bradshaw, C.J.A., Hoskins, A.J. et al. 2021. Detailed assessment of the reported economic costs of invasive species in Australia (10.3897@neobiota.67.58834).pdf|Bradshaw, C.J.A., Hoskins, A.J., Haubrock, P.J., Cuthbert, R.N., Diagne, C., Leroy, B., Andrews, L., Page, B., Cassey, P., Sheppard, A.W., Courchamp, F. 2021. Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota 67, 511–550]] ({{doi|10.3897/neobiota.67.58834}}).
 
*[[Media:Bradshaw, C.J.A., Hoskins, A.J. et al. 2021. Detailed assessment of the reported economic costs of invasive species in Australia (10.3897@neobiota.67.58834).pdf|Bradshaw, C.J.A., Hoskins, A.J., Haubrock, P.J., Cuthbert, R.N., Diagne, C., Leroy, B., Andrews, L., Page, B., Cassey, P., Sheppard, A.W., Courchamp, F. 2021. Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota 67, 511–550]] ({{doi|10.3897/neobiota.67.58834}}).
 +
*[[Media:Branstetter, M.G., Danforth, B.N. et al. 2017. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees (10.1016@j.cub.2017.03.027).pdf|Branstetter, M.G., Danforth, B.N., Pitts, J.P., Faircloth, B.C., Ward, P.S., Buffington, M.L., Gates, M.W., Kula, R.R., Brady, S.G. 2017. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology 27, 1019–1025]] ({{doi|10.1016/j.cub.2017.03.027}}).
 
*[[Media:Brassard, F., Leong, C.-M., Chan, H.-H., Guénard, B. 2021. High diversity in urban areas (10.3390@d13080358).pdf|Brassard, F., Leong, C.-M., Chan, H.-H., Guénard, B. 2021. High diversity in urban areas: How comprehensive sampling reveals high ant species richness within one of the most urbanized regions of the world. Diversity 13, 358]] ({{doi|10.3390/d13080358}}).
 
*[[Media:Brassard, F., Leong, C.-M., Chan, H.-H., Guénard, B. 2021. High diversity in urban areas (10.3390@d13080358).pdf|Brassard, F., Leong, C.-M., Chan, H.-H., Guénard, B. 2021. High diversity in urban areas: How comprehensive sampling reveals high ant species richness within one of the most urbanized regions of the world. Diversity 13, 358]] ({{doi|10.3390/d13080358}}).
 
*[[Media:Brown, M.J.F., Bonfoeffer, S. 2003. On the evolution of claustral colony founding in ants.pdf|Brown, M.J.F., Bonhoeffer, S. 2003. On the evolution of claustral colony founding in ants. Evolutionary Ecology Research 5: 305–313.]]
 
*[[Media:Brown, M.J.F., Bonfoeffer, S. 2003. On the evolution of claustral colony founding in ants.pdf|Brown, M.J.F., Bonhoeffer, S. 2003. On the evolution of claustral colony founding in ants. Evolutionary Ecology Research 5: 305–313.]]
 +
*[[Media:Bulter, I. 2020. Hybridization in ants (Ph.D. thesis).pdf|Bulter, I. 2020. Hybridization in ants. Ph.D. thesis, Rockefeller University.]]
 
*Buren, W. F. 1972.  Revisionary studies on the taxonomy of the imported fire ants. J. Ga. Entomol. Soc. 7: 1-26 (page 9, worker, queen, male described)
 
*Buren, W. F. 1972.  Revisionary studies on the taxonomy of the imported fire ants. J. Ga. Entomol. Soc. 7: 1-26 (page 9, worker, queen, male described)
 
*[[Media:Casadei-Ferreira, A., Fischer, G. et al. 2020. Evidence for a thoracic crop in the workers of some Neotropical Pheidole species (10.1016@j.asd.2020.100977).pdf|Casadei-Ferreira, A., Fischer, G., Economo, E.P. 2020. Evidence for a thoracic crop in the workers of some Neotropical ''Pheidole'' species (Formicidae: Myrmicinae). Arthropod Structure, Development 59, 100977]] ({{doi|10.1016/J.ASD.2020.100977}}).
 
*[[Media:Casadei-Ferreira, A., Fischer, G. et al. 2020. Evidence for a thoracic crop in the workers of some Neotropical Pheidole species (10.1016@j.asd.2020.100977).pdf|Casadei-Ferreira, A., Fischer, G., Economo, E.P. 2020. Evidence for a thoracic crop in the workers of some Neotropical ''Pheidole'' species (Formicidae: Myrmicinae). Arthropod Structure, Development 59, 100977]] ({{doi|10.1016/J.ASD.2020.100977}}).
 +
*[[Media:Cerda, X., Arnan, X. et al. 2013. Is competition a significant hallmark of ant ecology.pdf|Cerda, X., Arnan, X., Retana, J. 2013. Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecological News 18: 131-147.]]
 +
*[[Media:Chan, K.H., Guenard, B. 2019. Ecological and socio-economic impacts of the red import fire ant (10.1007@s11252-019-00893-3).pdf|Chan, K.H., Guénard, B. 2019. Ecological and socio-economic impacts of the red import fire ant, ''Solenopsis invicta'' (Hymenoptera: Formicidae), on urban agricultural ecosystems. Urban Ecosystems 23, 1–12]] ({{doi|10.1007/s11252-019-00893-3}}).
 +
*[[Media:Chen, L., Li, X. et al. 2021. A global study of transcriptome dynamics in the venom gland of Solenopsis invicta (10.32604@biocell.2021.016450).pdf|Chen, L., Li, X., He., T., Wu, Q., Chen, T., Huang, J., Lu, Y. 2021. A global study of transcriptome dynamics in the venom gland of ''Solenopsis invicta'' Buren during laboratory rearing. BIOCELL]] ({{doi|10.32604/biocell.2021.016450}}).
 +
*[[Media:Chiu, M.-C., Wu, W.-J. et al. 2019. Carriers and cutters (10.1017@S0007485319000750).pdf|Chiu, M.-C., Wu, W.-J., Lai, L.-C. 2019. Carriers and cutters: size-dependent caste polyethism in the tropical fire ant (''Solenopsis geminata''). Bulletin of Entomological Research 110, 388–396]] ({{doi|10.1017/s0007485319000750}}).
 +
*[[Media:Choe, J.C. 2010. Colony founding in social insects.pdf|Choe, J.C. 2010. Colony founding in social insects. Encyclopedia of Animal Behavior (Second Edition), pp. 310-316.]]
 
*[[Media:Choppin, M., Graf, S. et al. 2021. Queen and worker phenotypic traits are associated with colony composition and environment in Temnothorax rugatulus (10.25849@myrmecol.news 031-061).pdf|Choppin, M., Graf, S., Feldmeyer, B., Libbrecht, R., Menzel, F., Foitzik, S. 2021. Queen and worker phenotypic traits are associated with colony composition and environment in ''Temnothorax rugatulus'' (Hymenoptera: Formicidae), an ant with alternative reproductive strategies. Myrmecological News 31: 61-69]] ({{doi|10.25849/MYRMECOL.NEWS_031:061}}).
 
*[[Media:Choppin, M., Graf, S. et al. 2021. Queen and worker phenotypic traits are associated with colony composition and environment in Temnothorax rugatulus (10.25849@myrmecol.news 031-061).pdf|Choppin, M., Graf, S., Feldmeyer, B., Libbrecht, R., Menzel, F., Foitzik, S. 2021. Queen and worker phenotypic traits are associated with colony composition and environment in ''Temnothorax rugatulus'' (Hymenoptera: Formicidae), an ant with alternative reproductive strategies. Myrmecological News 31: 61-69]] ({{doi|10.25849/MYRMECOL.NEWS_031:061}}).
 
*[[Media:Cohen, P., Privman, E. 2020. The social supergene dates back to the speciation time of two Solenopsis fire ant species (10.1038@s41598-020-67999-z).pdf|Cohen, P., Privman, E. 2020. The social supergene dates back to the speciation time of two ''Solenopsis'' fire ant species. Scientific Reports 10: 11538]] ({{doi|10.1038/S41598-020-67999-Z}}).
 
*[[Media:Cohen, P., Privman, E. 2020. The social supergene dates back to the speciation time of two Solenopsis fire ant species (10.1038@s41598-020-67999-z).pdf|Cohen, P., Privman, E. 2020. The social supergene dates back to the speciation time of two ''Solenopsis'' fire ant species. Scientific Reports 10: 11538]] ({{doi|10.1038/S41598-020-67999-Z}}).
Line 566: Line 603:
 
*[[Media:Cournault, L., Aron, S. 2009. Diploid males, diploid sperm production, and triploid females in the ant Tapinoma erraticum (10.1007@s00114-009-0590-1).pdf|Cournault, L., Aron, S. 2009. Diploid males, diploid sperm production, and triploid females in the ant ''Tapinoma erraticum''. Naturwissenschaften 96: 1393–1400]] ({{doi|10.1007/s00114-009-0590-1}}).
 
*[[Media:Cournault, L., Aron, S. 2009. Diploid males, diploid sperm production, and triploid females in the ant Tapinoma erraticum (10.1007@s00114-009-0590-1).pdf|Cournault, L., Aron, S. 2009. Diploid males, diploid sperm production, and triploid females in the ant ''Tapinoma erraticum''. Naturwissenschaften 96: 1393–1400]] ({{doi|10.1007/s00114-009-0590-1}}).
 
*[[Media:Cronin, A.L., Monnin, T. 2009. Bourgeois queens and high stakes games in the ant Aphaenogaster senilis (10.1186@1742-9994-6-24).pdf|Cronin, A.L., Monnin, T. 2009. Bourgeois queens and high stakes games in the ant Aphaenogaster senilis. Frontiers in Zoology 6, 24.]] ({{doi|10.1186/1742-9994-6-24}}).
 
*[[Media:Cronin, A.L., Monnin, T. 2009. Bourgeois queens and high stakes games in the ant Aphaenogaster senilis (10.1186@1742-9994-6-24).pdf|Cronin, A.L., Monnin, T. 2009. Bourgeois queens and high stakes games in the ant Aphaenogaster senilis. Frontiers in Zoology 6, 24.]] ({{doi|10.1186/1742-9994-6-24}}).
 +
*[[Media:Csata, E., Dussutour, A. 2019. Nutrient regulation in ants (10.25849@myrmecol.news_029-111).pdf|Csata, E., Dussutour, A. 2019. Nutrient regulation in ants (Hymenoptera: Formicidae): a review. Myrmecological News 29: 111-124]] ({{doi|10.25849/MYRMECOL.NEWS_029:111}}).
 +
*[[Media:Culebra Mason, S., Catalano, P. et al. 2009. Utilización de trampas Pitfall con distintos atrayentes alimentarios.pdf|Culebra Mason, S., Catalano, P., Sgarbi, C., Verzero, F., Blondel, D. Ricci, M., Antonini, A. 2009. Utilización de trampas Pitfall con distintos atrayentes alimentarios para el monitoreo de hormigas en sistemas pastoriles. Boletin de Sanidad Vegetal Plagas 35: 187-192.]]
 
*[[Media:Cushing, P.E. 2012. Spider-ant associations (10.1155@2012@151989).pdf|Cushing, P.E. 2012. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche: A Journal of Entomology 2012, 1–23]] ({{doi|10.1155/2012/151989}}).
 
*[[Media:Cushing, P.E. 2012. Spider-ant associations (10.1155@2012@151989).pdf|Cushing, P.E. 2012. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche: A Journal of Entomology 2012, 1–23]] ({{doi|10.1155/2012/151989}}).
 
*[[Media:Dahbi, A., Lenoir, A. 1998. Queen and colony odour in the multiple nest ant species, Cataglyphis iberica (10.1007@s000400050090).pdf|Dahbi, A., Lenoir, A. 1998. Queen and colony odour in the multiple nest ant species, ''Cataglyphis iberica'' (Hymenoptera, Formicidae). Insectes Sociaux 45, 301–313]] ({{doi|10.1007/s000400050090}}).
 
*[[Media:Dahbi, A., Lenoir, A. 1998. Queen and colony odour in the multiple nest ant species, Cataglyphis iberica (10.1007@s000400050090).pdf|Dahbi, A., Lenoir, A. 1998. Queen and colony odour in the multiple nest ant species, ''Cataglyphis iberica'' (Hymenoptera, Formicidae). Insectes Sociaux 45, 301–313]] ({{doi|10.1007/s000400050090}}).
 
*[[Media:Dall'Aglio-Holvorcem, C., Benson, W. et al. 2009. Chemical tools to distinguish the fire ant species.pdf|Dall'Aglio-Holvorcem, C., Benson, W., Gilbert, L., Trager, J., Trigo, J. 2009. Chemical tools to distinguish the fire ant species ''Solenopsis invicta'' and ''S. saevissima'' (Formicidae: Myrmicinae) in South East Brazil. Biochemical Systematics and Ecology 37, 442-451]] ({{doi|10.1016/j.bse.2009.05.017}}).
 
*[[Media:Dall'Aglio-Holvorcem, C., Benson, W. et al. 2009. Chemical tools to distinguish the fire ant species.pdf|Dall'Aglio-Holvorcem, C., Benson, W., Gilbert, L., Trager, J., Trigo, J. 2009. Chemical tools to distinguish the fire ant species ''Solenopsis invicta'' and ''S. saevissima'' (Formicidae: Myrmicinae) in South East Brazil. Biochemical Systematics and Ecology 37, 442-451]] ({{doi|10.1016/j.bse.2009.05.017}}).
 +
*[[Media:Davis, T. 2009. The ants of South Carolina.pdf|Davis, T. 2009. The ants of South Carolina (thesis, Clemson University).]]
 +
*[[Media:De Bekker, C., Will, I. et al. 2018. The ants and their parasites (10.25849@myrmecol.news 028-001).pdf|de Bekker, C., Will, I., Das, B., Adams, R.M.M. 2018. The ants (Hymenoptera: Formicidae) and their parasites: effects of parasitic manipulations and host responses on ant behavioral ecology. Myrmecological News 28: 1-24]] ({{doi|10.25849/myrmecol.news_028:001}}).
 +
*[[Media:De la Mora, A., Sankovitz, M. et al. 2020. Ants as host and intruder (10.25849@myrmecol.news 030-053).pdf|de la Mora, A., Sankovitz, M., Purcell, J. 2020. Ants (Hymenoptera: Formicidae) as host and intruder: recent advances and future directions in the study of exploitative strategies. Myrmecological News 30: 53-71]] ({{doi|10.25849/MYRMECOL.NEWS_030:053}}).
 +
*[[Media:Dekoninck, W., Wauters, N. et al. 2019. Hormigas de Colombia. Cap. 35. Hormigas invasoras en Colombia.pdf|Dekoninck, W., Wauters, N., Delsinne, T. 2019. Capitulo 35. Hormigas invasoras en Colombia. Hormigas de Colombia.]]
 +
*[[Media:Del Toro, I., Ribbons, R.R. et al. 2012. The little things that run the world revisited.pdf|Del Toro, I., Robbons, R.R., Pelini, S.L. 2012. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News 17: 133-146.]]
 +
*[[Media:Devenish, A.J.M., Newton, R.J. et al. 2021. Contrasting responses of native ant communities to invasion by an ant invader, Linepithema humile (10.1007@s10530-021-02522-7).pdf|Devenish, A.J.M., Newton, R.J., Bridle, J.R., Gomez, C., Midgley, J.J., Sumner, S. 2021. Contrasting responses of native ant communities to invasion by an ant invader, ''Linepithema humile''. Biological Invasions 23, 2553–2571]] ({{doi|10.1007/s10530-021-02522-7}}).
 
*[[Media:Deyrup, M., Davis, L. & Cover, S. 2000. Exotic ants in Florida.pdf|Deyrup, M., Davis, L. & Cover, S. 2000. Exotic ants in Florida. Transactions of the American Entomological Society 126, 293-325.]]
 
*[[Media:Deyrup, M., Davis, L. & Cover, S. 2000. Exotic ants in Florida.pdf|Deyrup, M., Davis, L. & Cover, S. 2000. Exotic ants in Florida. Transactions of the American Entomological Society 126, 293-325.]]
 +
*[[Media:Deyrup, M.A., Carlin, N. et al. 1988. A review of the ants of the Florida Keys.pdf|Deyrup, M.A., Carlin, N., Trager, J., Umphrey, G. 1988. A review of the ants of the Florida Keys. Florida Entomologist 71: 163-176.]]
 
*[[Media:Dolezal, A.G. 2010. Caste determination in arthropods, In Encyclopedia of Animal Behavior.pdf|Dolezal, A.G. 2010. Caste determination in arthropods, In Encyclopedia of Animal Behavior, edited by Michael D. Breed and Janice Moore, Academic Press, Oxford, pages 247-253.]]
 
*[[Media:Dolezal, A.G. 2010. Caste determination in arthropods, In Encyclopedia of Animal Behavior.pdf|Dolezal, A.G. 2010. Caste determination in arthropods, In Encyclopedia of Animal Behavior, edited by Michael D. Breed and Janice Moore, Academic Press, Oxford, pages 247-253.]]
 
*[[Media:Dolezal, A.G. 2019. Caste determination in arthropods (10.1016@B978-0-12-809633-8.20815-7).pdf|Dolezal, A.G. 2019. Caste determination in arthropods. In: Encyclopedia of Animal Behavior, 2nd edition, Volume 4: 691–698]] ({{doi|10.1016/B978-0-12-809633-8.20815-7}}).
 
*[[Media:Dolezal, A.G. 2019. Caste determination in arthropods (10.1016@B978-0-12-809633-8.20815-7).pdf|Dolezal, A.G. 2019. Caste determination in arthropods. In: Encyclopedia of Animal Behavior, 2nd edition, Volume 4: 691–698]] ({{doi|10.1016/B978-0-12-809633-8.20815-7}}).
 
*[[Media:Doums, C., Ruel, C. et al. 2013. Fertile diploid males in the ant Cataglyphis cursor (10.1007@s00265-013-1606-6).pdf|Doums, C., Ruel, C., Clémencet, J., Fédérici, P., Cournault, L., Aron, S. 2013. Fertile diploid males in the ant ''Cataglyphis cursor'': a potential cost of thelytoky? Behavioral Ecology and Sociobiology 67, 1983–1993]] ({{doi|10.1007/s00265-013-1606-6}}).
 
*[[Media:Doums, C., Ruel, C. et al. 2013. Fertile diploid males in the ant Cataglyphis cursor (10.1007@s00265-013-1606-6).pdf|Doums, C., Ruel, C., Clémencet, J., Fédérici, P., Cournault, L., Aron, S. 2013. Fertile diploid males in the ant ''Cataglyphis cursor'': a potential cost of thelytoky? Behavioral Ecology and Sociobiology 67, 1983–1993]] ({{doi|10.1007/s00265-013-1606-6}}).
 +
*[[Media:Dröse, W., Podgaiski, L.R. et al. 2021. Passive restoration of subtropical grasslands leads to incomplete recovery of ant communities (10.1016@j.biocon.2021.109387).pdf|Dröse, W., Podgaiski, L.R., Gossner, M.M., Meyer, S.T., Hermann, J.-M., Leidinger, J., Koch, C., Kollmann, J., Weisser, W.W., de S. Mendonça, M., Overbeck, G.E. 2021. Passive restoration of subtropical grasslands leads to incomplete recovery of ant communities in early successional stages. Biological Conservation 264, 109387]] ({{doi|10.1016/j.biocon.2021.109387}}).
 
*[[Media:Elias, J., Mazzi, D. et al. 2009. No need to discriminate (10.1371@journal.pone.0006024).PDF|Elias, J., Mazzi, D., Dorn, S. 2009. No need to discriminate? Reproductive diploid males in a parasitoid with complementary sex determination. PLoS ONE 4, e6024.]] ({{doi|10.1371/journal.pone.0006024}}).
 
*[[Media:Elias, J., Mazzi, D. et al. 2009. No need to discriminate (10.1371@journal.pone.0006024).PDF|Elias, J., Mazzi, D., Dorn, S. 2009. No need to discriminate? Reproductive diploid males in a parasitoid with complementary sex determination. PLoS ONE 4, e6024.]] ({{doi|10.1371/journal.pone.0006024}}).
 
*[[Media:Espadaler, X., Santamaria, S. 2012. Ecto- and Endoparasitic Fungi on Ants from the Holarctic Region.pdf|Espadaler, X., Santamaria, S. 2012. Ecto- and Endoparasitic Fungi on Ants from the Holarctic Region. Psyche Article ID 168478, 10 pages (doi:10.1155/2012/168478).]]
 
*[[Media:Espadaler, X., Santamaria, S. 2012. Ecto- and Endoparasitic Fungi on Ants from the Holarctic Region.pdf|Espadaler, X., Santamaria, S. 2012. Ecto- and Endoparasitic Fungi on Ants from the Holarctic Region. Psyche Article ID 168478, 10 pages (doi:10.1155/2012/168478).]]
Line 580: Line 627:
 
*[[Media:Garcia, F.R.M., Ovruski, S.M., Suárez, L., Cancino, J., Liburd, O.E. 2020. Biological control of tephritid fruit flies (10.3390@insects11100662).pdf|Garcia, F.R.M., Ovruski, S.M., Suárez, L., Cancino, J., Liburd, O.E. 2020. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects 11, 662.]] ({{doi|10.3390/insects11100662}}).
 
*[[Media:Garcia, F.R.M., Ovruski, S.M., Suárez, L., Cancino, J., Liburd, O.E. 2020. Biological control of tephritid fruit flies (10.3390@insects11100662).pdf|Garcia, F.R.M., Ovruski, S.M., Suárez, L., Cancino, J., Liburd, O.E. 2020. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects 11, 662.]] ({{doi|10.3390/insects11100662}}).
 
*[[Media:Giannetti, D., Schifani, E. et al. 2021. Assessing ant diversity in agroecosystems (10.19263@REDIA-104.21.11).pdf|Giannetti, D., Schifani, E., Castracani, C., Ghizzoni, M., Delaiti, M., Pfenner, F., Spotti, F.A., Mori, A., Ioriatti, C., Grasso, D.A. 2021. Assessing ant diversity in agroecosystems: the case of Italian vineyards of the Adige Valley. Redia 104, 97–109]] ({{doi|10.19263/redia-104.21.11}}).
 
*[[Media:Giannetti, D., Schifani, E. et al. 2021. Assessing ant diversity in agroecosystems (10.19263@REDIA-104.21.11).pdf|Giannetti, D., Schifani, E., Castracani, C., Ghizzoni, M., Delaiti, M., Pfenner, F., Spotti, F.A., Mori, A., Ioriatti, C., Grasso, D.A. 2021. Assessing ant diversity in agroecosystems: the case of Italian vineyards of the Adige Valley. Redia 104, 97–109]] ({{doi|10.19263/redia-104.21.11}}).
 +
*[[Media:Gochnour, B.M., Suiter, D.R. et al. 2019. Ant fauna of the Marine Port of Savannah (10.18474@JES18-132).pdf|Gochnour, B.M., Suiter, D.R., Booher, D. 2019. Ant (Hymenoptera: Formicidae) fauna of the Marine Port of Savannah, Garden City, Georgia (USA). Journal of Entomological Science 54, 417-429]] ({{doi|10.18474/jes18-132}}).
 +
*[[Media:Gospocic, J., Glastad, K.M. et al. 2021. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones (10.1016@j.cell.2021.10.006).pdf|Gospocic, J., Glastad, K.M., Sheng, L., Shields, E.J., Berger, S.L., Bonasio, R. 2021. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 184, 5807–5823.e14]] ({{doi|10.1016/j.cell.2021.10.006}}).
 
*[[Media:Harpur, B.A., Sobhani, M. et al. 2012. A review of the consequences of complementary sex determination and diploid male production (10.1111@j.1570-7458.2012.01306.x).pdf|Harpur, B.A., Sobhani, M., Zayed, A. 2013. A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomologia Experimentalis et Applicata 146, 156–164.]] ({{doi|10.1111/J.1570-7458.2012.01306.X}}).
 
*[[Media:Harpur, B.A., Sobhani, M. et al. 2012. A review of the consequences of complementary sex determination and diploid male production (10.1111@j.1570-7458.2012.01306.x).pdf|Harpur, B.A., Sobhani, M., Zayed, A. 2013. A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomologia Experimentalis et Applicata 146, 156–164.]] ({{doi|10.1111/J.1570-7458.2012.01306.X}}).
 
*[[Media:Hickling, R., Brown, R.L. 2000. Analysis of acoustic communication by ants.pdf|Hickling, R., Brown, R.L. 2000. Analysis of acoustic communication by ants. Journal of the Acoustic Society of America 108: 1920-1929.]]
 
*[[Media:Hickling, R., Brown, R.L. 2000. Analysis of acoustic communication by ants.pdf|Hickling, R., Brown, R.L. 2000. Analysis of acoustic communication by ants. Journal of the Acoustic Society of America 108: 1920-1929.]]
 +
*[[Media:Hill, J.G. 2015. Ants of the Big Thicket Region of Texas.pdf|Hill, J.G. 2015. Ants (Hymenoptera: Formicidae) of the Big Thicket Region of Texas. Midsouth Entomologist 8: 24-34.]]
 
*[[Media:Hoey-Chamberlain, R.V., Rust, M.K. 2014. Food and bait preferences of Liometopum occidentale.pdf|Hoey-Chamberlain, R., Rust, M.K. 2014. Food and bait preferences of Liometopum occidentale (Hymenoptera: Formicidae). Journal of Entomological Science 49(1): 30-43.]]
 
*[[Media:Hoey-Chamberlain, R.V., Rust, M.K. 2014. Food and bait preferences of Liometopum occidentale.pdf|Hoey-Chamberlain, R., Rust, M.K. 2014. Food and bait preferences of Liometopum occidentale (Hymenoptera: Formicidae). Journal of Entomological Science 49(1): 30-43.]]
 
*[[Media:Hoey-Chamberlain, R.V. 2012. Food preference, survivorship, and intraspecific interactions of Velvety Tree Ants, M.S. thesis.pdf|Hoey-Chamberlain, R.V. 2012. Food preference, survivorship, and intraspecific interactions of  Velvety Tree Ants. M.S. thesis, University of California, Riverside.]]
 
*[[Media:Hoey-Chamberlain, R.V. 2012. Food preference, survivorship, and intraspecific interactions of Velvety Tree Ants, M.S. thesis.pdf|Hoey-Chamberlain, R.V. 2012. Food preference, survivorship, and intraspecific interactions of  Velvety Tree Ants. M.S. thesis, University of California, Riverside.]]
Line 591: Line 641:
 
*[[Media:Jouvenaz, D.P., Ellis, E.A. 1986. Vairimorpha invictae n. sp., a parasite of the Red Imported Fire Ant, Solenopsis invicta.pdf|Jouvenaz, D.P., Ellis, E.A. 1986. ''Vairimorpha invictae'' n. sp. (Microspora: Microsporida), a parasite of the Red Imported Fire Ant, ''Solenopsis invicta'' Buren (Hymenoptera: Formicidae). Journal of Eukaryotic Microbiology 33, 457-461 (DOI doi.org/10.1111/j.1550-7408.1986.tb05641.x).]]
 
*[[Media:Jouvenaz, D.P., Ellis, E.A. 1986. Vairimorpha invictae n. sp., a parasite of the Red Imported Fire Ant, Solenopsis invicta.pdf|Jouvenaz, D.P., Ellis, E.A. 1986. ''Vairimorpha invictae'' n. sp. (Microspora: Microsporida), a parasite of the Red Imported Fire Ant, ''Solenopsis invicta'' Buren (Hymenoptera: Formicidae). Journal of Eukaryotic Microbiology 33, 457-461 (DOI doi.org/10.1111/j.1550-7408.1986.tb05641.x).]]
 
*[[Media:Jung, J.-M., Lee, H.-S. et al. 2021. Development of a predictive model for soil temperature (10.1016@j.ecoinf.2021.101220).pdf|Jung, J.-M., Lee, H.-S., Lee, J.-H., Jung, S., Lee, W.-H. 2021. Development of a predictive model for soil temperature and its application to species distribution modeling of ant species in South Korea. Ecological Informatics 61, 101220]] ({{doi|10.1016/j.ecoinf.2021.101220}}).
 
*[[Media:Jung, J.-M., Lee, H.-S. et al. 2021. Development of a predictive model for soil temperature (10.1016@j.ecoinf.2021.101220).pdf|Jung, J.-M., Lee, H.-S., Lee, J.-H., Jung, S., Lee, W.-H. 2021. Development of a predictive model for soil temperature and its application to species distribution modeling of ant species in South Korea. Ecological Informatics 61, 101220]] ({{doi|10.1016/j.ecoinf.2021.101220}}).
 +
*[[Media:Kathirithamby, J. 2009. Host-parasitoid associations in Strepsiptera (10.1146@annurev.ento.54.110807.090525).pdf|Kathirithamby, J. 2009. Host-Parasitoid Associations in Strepsiptera. Annual Review of Entomology 54, 227–249]] ({{doi|10.1146/annurev.ento.54.110807.090525}}).
 +
*Kathirithamby, J., Johnston, J.S. 1992. Stylopization of ''Solenopsis invicta'' (Hymenoptera: Formicidae) by ''Caenocholax fenyesi'' (Strepsiptera: Myrmecolacidae) in Texas. Annals of the Entomological Society of America 85, 293-297.
 
*Krieger, M.J.B., Ross, K.G., Chang, C.W.Y., Keller, L. 1999. Frequency and origin of triploidy in the fire ant ''Solenopsis invicta''. Heredity 82:142–150
 
*Krieger, M.J.B., Ross, K.G., Chang, C.W.Y., Keller, L. 1999. Frequency and origin of triploidy in the fire ant ''Solenopsis invicta''. Heredity 82:142–150
 
*[[Media:Laciny, A. 2021. Among the shapeshifters (10.1186@s13227-021-00173-2).pdf|Laciny, A. 2021. Among the shapeshifters: parasite-induced morphologies in ants (Hymenoptera, Formicidae) and their relevance within the EcoEvoDevo framework. EvoDevo 12, 2]] ({{doi|10.1186/s13227-021-00173-2}}).
 
*[[Media:Laciny, A. 2021. Among the shapeshifters (10.1186@s13227-021-00173-2).pdf|Laciny, A. 2021. Among the shapeshifters: parasite-induced morphologies in ants (Hymenoptera, Formicidae) and their relevance within the EcoEvoDevo framework. EvoDevo 12, 2]] ({{doi|10.1186/s13227-021-00173-2}}).
Line 603: Line 655:
 
*[[Media:Liu, C., Fischer, G. et al. 2020. Ants of the Hengduan Mountains (10.3897@zookeys.978.55767).pdf|Liu, C., Fischer, G., Hita Garcia, F., Yamane, S., Liu, Q., Peng, Y.Q., Economo, E.P., Guénard, B., Pierce, N.E. 2020. Ants of the Hengduan Mountains: a new altitudinal survey and updated checklist for Yunnan Province highlight an understudied insect biodiversity hotspot. ZooKeys 978, 1–171]] ({{doi|10.3897/zookeys.978.55767}}).
 
*[[Media:Liu, C., Fischer, G. et al. 2020. Ants of the Hengduan Mountains (10.3897@zookeys.978.55767).pdf|Liu, C., Fischer, G., Hita Garcia, F., Yamane, S., Liu, Q., Peng, Y.Q., Economo, E.P., Guénard, B., Pierce, N.E. 2020. Ants of the Hengduan Mountains: a new altitudinal survey and updated checklist for Yunnan Province highlight an understudied insect biodiversity hotspot. ZooKeys 978, 1–171]] ({{doi|10.3897/zookeys.978.55767}}).
 
*[[Media:Lorite, P., Palomeque, T. 2010. Karyotype evolution in ants.pdf|Lorite, P., Palomeque, T. 2010. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecological News 13: 89-102.]]
 
*[[Media:Lorite, P., Palomeque, T. 2010. Karyotype evolution in ants.pdf|Lorite, P., Palomeque, T. 2010. Karyotype evolution in ants (Hymenoptera: Formicidae), with a review of the known ant chromosome numbers. Myrmecological News 13: 89-102.]]
 +
*[[Media:Lyu, D.P., Lee, H.S. 2017. The Red imported fire ant, Solenopsis invicta discovered in Busan sea port, Korea (10.5656@KSAE.2017.11.0.049).pdf|Lyu, D.P., Lee, H.S. 2017. The Red imported fire ant, ''Solenopsis invicta'' Buren (Hymenoptera: Formicidae: Myrmicinae) discovered in Busan sea port, Korea. Korean Journal of Applied Entomology 56(4): 437-438]] ({{doi|10.5656/KSAE.2017.11.0.049}}).
 
*[[Media:MacGown, J.A. 2006. A collection of Myrmecosaurus ferrugineus.pdf|MacGown, J.A. 2006. A collection of ''Myrmecosaurus ferrugineus'' Bruch (Staphylinidae: Paederinae) from a nest of ''Solenopsis invicta'' X ''richteri'' (Hymenoptera: Formicidae) in Mississippi. Marginalia Insecta 1(3): 1-3.]]
 
*[[Media:MacGown, J.A. 2006. A collection of Myrmecosaurus ferrugineus.pdf|MacGown, J.A. 2006. A collection of ''Myrmecosaurus ferrugineus'' Bruch (Staphylinidae: Paederinae) from a nest of ''Solenopsis invicta'' X ''richteri'' (Hymenoptera: Formicidae) in Mississippi. Marginalia Insecta 1(3): 1-3.]]
 
*[[Media:MacGown, J.O., Wetterer, J.K. 2013. Distribution and biological notes of Strumigenys margaritae (10.1163@18749836-06001066).pdf|MacGown, J.A., Wetterer, J.K. 2013. Distribution and biological notes of ''Strumigenys margaritae'' (Hymenoptera: Formicidae: Dacetini). Terrestrial Arthropod Reviews 6, 247–255]] ({{doi|10.1163/18749836-06001066}}).
 
*[[Media:MacGown, J.O., Wetterer, J.K. 2013. Distribution and biological notes of Strumigenys margaritae (10.1163@18749836-06001066).pdf|MacGown, J.A., Wetterer, J.K. 2013. Distribution and biological notes of ''Strumigenys margaritae'' (Hymenoptera: Formicidae: Dacetini). Terrestrial Arthropod Reviews 6, 247–255]] ({{doi|10.1163/18749836-06001066}}).
Line 609: Line 662:
 
*McInnes, D.A., Tschinkel, W.R. 1996. Mermithid nematode parasitism of ''Solenopsis'' ants (Hymenoptera: Formicidae) of Northern Florida. Annals of the Entomological Society of America 89: 231-237 ({{doi|10.1093/aesa/89.2.231}}).
 
*McInnes, D.A., Tschinkel, W.R. 1996. Mermithid nematode parasitism of ''Solenopsis'' ants (Hymenoptera: Formicidae) of Northern Florida. Annals of the Entomological Society of America 89: 231-237 ({{doi|10.1093/aesa/89.2.231}}).
 
*[[Media:Mendonca, R., Melo, D. et al. 2020. Evaluation of food selection of fire ant Solenopsis saevissima.pdf|Mendonca, R., Melo, D., Prezoto, F. 2020. Evaluation of food selection of fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) in resources with and without immature stages of Chrysomya albiceps (Wiedemann, 1819) (Diptera: Calliphoridae). Brazilian Journal of Development 6: 74119-74136.]]
 
*[[Media:Mendonca, R., Melo, D. et al. 2020. Evaluation of food selection of fire ant Solenopsis saevissima.pdf|Mendonca, R., Melo, D., Prezoto, F. 2020. Evaluation of food selection of fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) in resources with and without immature stages of Chrysomya albiceps (Wiedemann, 1819) (Diptera: Calliphoridae). Brazilian Journal of Development 6: 74119-74136.]]
 +
*[[Media:Menzel, T.O., Cross, D.C. et al. 2008. A survey of Imported Fire Ant.pdf|Menzel, T.O., Cross, D.C., Chen, J., Caprio, M.A., Nebeker, T.E. 2008. A survey of Imported Fire Ant (Hymenoptera: Formicidae), species and social forms across four counties in east-central Mississippi. Midsouth Entomologist 1: 3-10.]]
 
*[[Media:Meurgey, F., Ramage, T. 2020. Challenging the Wallacean shortfall.pdf|Meurgey, F. 2020. Challenging the Wallacean shortfall:  A total assessment of insect diversity on Guadeloupe  (French West Indies), a checklist and bibliography. Insecta Mundi 786: 1–183.]]
 
*[[Media:Meurgey, F., Ramage, T. 2020. Challenging the Wallacean shortfall.pdf|Meurgey, F. 2020. Challenging the Wallacean shortfall:  A total assessment of insect diversity on Guadeloupe  (French West Indies), a checklist and bibliography. Insecta Mundi 786: 1–183.]]
 
*[[Media:Meurville, M.-P., LeBoeuf, A.C. 2021. Trophallaxis (10.25849@myrmecol.news_031-001).pdf|Meurville, M.-P., LeBoeuf, A.C. 2021. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecological News 31: 1-30]] ({{doi|10.25849/MYRMECOL.NEWS_031:001}}).
 
*[[Media:Meurville, M.-P., LeBoeuf, A.C. 2021. Trophallaxis (10.25849@myrmecol.news_031-001).pdf|Meurville, M.-P., LeBoeuf, A.C. 2021. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecological News 31: 1-30]] ({{doi|10.25849/MYRMECOL.NEWS_031:001}}).
 +
*[[Media:Módra, G., Maák, I. et al. 2021. Comparison of foraging tool use in two species of myrmicine ants (10.1007@s00040-021-00838-0).pdf|Módra, G., Maák, I., Lőrincz, Á., Lőrinczi, G. 2021. Comparison of foraging tool use in two species of myrmicine ants (Hymenoptera: Formicidae). Insectes Sociaux]] ({{doi|10.1007/s00040-021-00838-0}}).
 
*[[Media:Mokadam, C. 2021. Native and non-native ant impacts on native fungi (M.A. thesis).pdf|Mokadam, C. 2021. Native and non-native ant impacts on native fungi (M.A. thesis, Buffalo State University).]]
 
*[[Media:Mokadam, C. 2021. Native and non-native ant impacts on native fungi (M.A. thesis).pdf|Mokadam, C. 2021. Native and non-native ant impacts on native fungi (M.A. thesis, Buffalo State University).]]
 
*[[Media:Montgomery, M.P., Vanderwoude, C. et al. 2020. The effects of laboratory rearing diet (10.1653@024.103.0417).pdf|Montgomery, M.P., Vanderwoude, C., Lynch, A.J.J., Robinson, W.A. 2020. The effects of laboratory rearing diet on recruitment behavior of ''Wasmannia auropunctata'' (Hymenoptera: Formicidaea). Florida Entomologist 103, 103-111]] ({{doi|10.1653/024.103.0417}}).
 
*[[Media:Montgomery, M.P., Vanderwoude, C. et al. 2020. The effects of laboratory rearing diet (10.1653@024.103.0417).pdf|Montgomery, M.P., Vanderwoude, C., Lynch, A.J.J., Robinson, W.A. 2020. The effects of laboratory rearing diet on recruitment behavior of ''Wasmannia auropunctata'' (Hymenoptera: Formicidaea). Florida Entomologist 103, 103-111]] ({{doi|10.1653/024.103.0417}}).
Line 617: Line 672:
 
*Palomeque, T., O. Sanllorente, X. Maside, J. Vela, P. Mora, M. I. Torres, G. Periquet, and P. Lorite. 2015. Evolutionary history of the Azteca-like mariner transposons and their host ants. Science of Nature. 102. doi:[http://dx.doi.org/10.1007/s00114-015-1294-3 10.1007/s00114-015-1294-3]
 
*Palomeque, T., O. Sanllorente, X. Maside, J. Vela, P. Mora, M. I. Torres, G. Periquet, and P. Lorite. 2015. Evolutionary history of the Azteca-like mariner transposons and their host ants. Science of Nature. 102. doi:[http://dx.doi.org/10.1007/s00114-015-1294-3 10.1007/s00114-015-1294-3]
 
*[[Media:Pamilo, P., Sundstrom, L. et al. 1994. Dipoid males and colony-level selection in Formica ants (10.1080@08927014.1994.9522996).pdf|Pamilo, P., Sundström, L., Fortelius, W., Rosengren, R. 1994. Diploid males and colony-level selection in Formica ants. Ethology Ecology, Evolution 6, 221–235]] ({{doi|10.1080/08927014.1994.9522996}}).
 
*[[Media:Pamilo, P., Sundstrom, L. et al. 1994. Dipoid males and colony-level selection in Formica ants (10.1080@08927014.1994.9522996).pdf|Pamilo, P., Sundström, L., Fortelius, W., Rosengren, R. 1994. Diploid males and colony-level selection in Formica ants. Ethology Ecology, Evolution 6, 221–235]] ({{doi|10.1080/08927014.1994.9522996}}).
 +
*[[Media:Park, J., Park, J. 2021. Complete mitochondrial genome of the gate-keeper ant Colobopsis nipponica (10.1080@23802359.2020.1845581).pdf|Park, J., Park, J. 2021. Complete mitochondrial genome of the gate-keeper ant ''Colobopsis nipponica'' (Wheeler, W.M., 1928) (Formicidae: Hymenoptera). Mitochondrial DNA Part B 6, 86–88]] ({{doi|10.1080/23802359.2020.1845581}}).
 
*[[Media:Park, S.-H., Hosoishi, S. et al. 2014. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan (10.5141@ecoenv.2014.015).pdf|Park, S.-H., Hosoishi, S., Ogata, K. 2014. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. Journal of Ecology and Environment 37, 123–129]] ({{doi|10.5141/ecoenv.2014.015}}).
 
*[[Media:Park, S.-H., Hosoishi, S. et al. 2014. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan (10.5141@ecoenv.2014.015).pdf|Park, S.-H., Hosoishi, S., Ogata, K. 2014. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. Journal of Ecology and Environment 37, 123–129]] ({{doi|10.5141/ecoenv.2014.015}}).
 +
*[[Media:Park, Y., Vatanparast, M. et al. 2021. Cold hardiness change in Solenopsis japonica by rapid cold hardening (10.5656@KSAE.2021.02.0.002).pdf|Park, Y., Vatanparast, M., Lee, J. 2021. Cold hardiness change in ''Solenopsis japonica'' (Hymenoptera: Formicidae) by rapid cold hardening. Korean Journal of Applied Entomology 60(2): 193-199]] ({{doi|10.5656/KSAE.2021.02.0.002}}).
 
*[[Media:Penick, C.A., Ebie, J., Moore, D. 2013. A non-destructive method for identifying the sex of ant larvae (10.1007@s00040-013-0323-5).pdf|Penick, C.A., Ebie, J., Moore, D. 2013. A non-destructive method for identifying the sex of ant larvae. Insectes Sociaux 61, 51–55]] ({{doi|10.1007/s00040-013-0323-5}}).
 
*[[Media:Penick, C.A., Ebie, J., Moore, D. 2013. A non-destructive method for identifying the sex of ant larvae (10.1007@s00040-013-0323-5).pdf|Penick, C.A., Ebie, J., Moore, D. 2013. A non-destructive method for identifying the sex of ant larvae. Insectes Sociaux 61, 51–55]] ({{doi|10.1007/s00040-013-0323-5}}).
 
*Pereira, R.M. 2004. Occurrence of ''Myrmicinosporidium durum'' in red imported fire ant, ''Solenopsis invicta'', and other new host ants in eastern United States. Journal of Invertebrate Pathology 86: 38-44 ({{doi|10.1016/j.jip.2004.03.005}}).
 
*Pereira, R.M. 2004. Occurrence of ''Myrmicinosporidium durum'' in red imported fire ant, ''Solenopsis invicta'', and other new host ants in eastern United States. Journal of Invertebrate Pathology 86: 38-44 ({{doi|10.1016/j.jip.2004.03.005}}).
Line 635: Line 692:
 
*[[Media:Saddoris, K., Fritz, A.H. et al. 2016. Evidence of selective mating and triploidy.pdf|Saddoris, K., Fritz, A.H., Fritz, G.N. 2016. Evidence of selective mating and triploidy among two social forms of ''Solenopsis invicta'' (Hymenoptera: Formicidae). Florida Entomologist 99, 566-568.]]
 
*[[Media:Saddoris, K., Fritz, A.H. et al. 2016. Evidence of selective mating and triploidy.pdf|Saddoris, K., Fritz, A.H., Fritz, G.N. 2016. Evidence of selective mating and triploidy among two social forms of ''Solenopsis invicta'' (Hymenoptera: Formicidae). Florida Entomologist 99, 566-568.]]
 
*[[Media:Sanchez-Restrepo, A.F., Chifflet, L. et al. 2020. A species delimitation approach (10.1371@journal.pone.0236086).pdf|Sánchez-Restrepo, A.F., Chifflet, L., Confalonieri, V.A., Tsutsui, N.D., Pesquero, M.A., Calcaterra, L.A. 2020. A Species delimitation approach to uncover cryptic species in the South American fire ant decapitating flies (Diptera: Phoridae: Pseudacteon). PLOS ONE 15, e0236086]] ({{doi|10.1371/journal.pone.0236086}}).
 
*[[Media:Sanchez-Restrepo, A.F., Chifflet, L. et al. 2020. A species delimitation approach (10.1371@journal.pone.0236086).pdf|Sánchez-Restrepo, A.F., Chifflet, L., Confalonieri, V.A., Tsutsui, N.D., Pesquero, M.A., Calcaterra, L.A. 2020. A Species delimitation approach to uncover cryptic species in the South American fire ant decapitating flies (Diptera: Phoridae: Pseudacteon). PLOS ONE 15, e0236086]] ({{doi|10.1371/journal.pone.0236086}}).
 +
*[[Media:Schultner, E., Pulliainen, U. 2020. Brood recognition and discrimination in ants (10.1007@s00040-019-00747-3).pdf|Schultner, E., Pulliainen, U. 2020. Brood recognition and discrimination in ants. Insectes Sociaux 67, 11–34]] ({{doi|10.1007/s00040-019-00747-3}}).
 
*[[Media:Sharaf, M.R., Gotzek, D. et al. 2020. Molecular phylogenetic analysis and morphological reassessments of thief ants (10.1038@s41598-020-69029-4).pdf|Sharaf, M.R., Gotzek, D., Guénard, B., Fisher, B.L., Aldawood, A.S., Al Dhafer, H.M., Mohamed, A.A. 2020. Molecular phylogenetic analysis and morphological reassessments of thief ants identify a new potential case of biological invasions. Scientific Reports 10, 12040]] ({{doi|10.1038/s41598-020-69029-4}}).
 
*[[Media:Sharaf, M.R., Gotzek, D. et al. 2020. Molecular phylogenetic analysis and morphological reassessments of thief ants (10.1038@s41598-020-69029-4).pdf|Sharaf, M.R., Gotzek, D., Guénard, B., Fisher, B.L., Aldawood, A.S., Al Dhafer, H.M., Mohamed, A.A. 2020. Molecular phylogenetic analysis and morphological reassessments of thief ants identify a new potential case of biological invasions. Scientific Reports 10, 12040]] ({{doi|10.1038/s41598-020-69029-4}}).
 
*Shattuck, S. O.; Porter, S. D.; Wojcik, D. P. 2004.  Case 3069. Solenopsis invicta Buren, 1972 (Insecta, Hymenoptera): proposed conservation of the specific name. Bull. Zool. Nomencl. 56: 27-30 (conservation of name)
 
*Shattuck, S. O.; Porter, S. D.; Wojcik, D. P. 2004.  Case 3069. Solenopsis invicta Buren, 1972 (Insecta, Hymenoptera): proposed conservation of the specific name. Bull. Zool. Nomencl. 56: 27-30 (conservation of name)
 
*[[Media:Shi, Q., He, Y. et al. 2020. Thermally induced actinidine production in biological samples (10.1021@acs.jafc.0c02540).pdf|Shi, Q., He, Y., Chen, J., Lu, L. 2020. Thermally Induced Actinidine Production in Biological Samples. Journal of Agricultural and Food Chemistry 68, 12252–12258]] ({{doi|10.1021/acs.jafc.0c02540}}).
 
*[[Media:Shi, Q., He, Y. et al. 2020. Thermally induced actinidine production in biological samples (10.1021@acs.jafc.0c02540).pdf|Shi, Q., He, Y., Chen, J., Lu, L. 2020. Thermally Induced Actinidine Production in Biological Samples. Journal of Agricultural and Food Chemistry 68, 12252–12258]] ({{doi|10.1021/acs.jafc.0c02540}}).
 +
*[[Media:da Silva, J.R., de Souza, A.Z. et al. 2018. Assessing the proteomic activity of the venom of the ant Ectatomma tuberculatum (10.1155@2018@7915464).pdf|Silva, J.R.da, Souza, A.Z.de, Pirovani, C.P., Costa, H., Silva, A., Dias, J.C.T., Delabie, J.H.C., Fontana, R. 2018. Assessing the proteomic activity of the venom of the ant ''Ectatomma tuberculatum'' (Hymenoptera: Formicidae: Ectatomminae). Psyche: A Journal of Entomology 2018, 1–11]] ({{doi|10.1155/2018/7915464}}).
 
*Smith, D. R. 1979.  Superfamily Formicoidea. Pp. 1323-1467 in: Krombein, K. V., Hurd, P. D., Smith, D. R., Burks, B. D. (eds.)  Catalog of Hymenoptera in America north of Mexico. Volume 2. Apocrita (Aculeata).  Washington, D.C.: Smithsonian Institution Pr (page 1386, see also)
 
*Smith, D. R. 1979.  Superfamily Formicoidea. Pp. 1323-1467 in: Krombein, K. V., Hurd, P. D., Smith, D. R., Burks, B. D. (eds.)  Catalog of Hymenoptera in America north of Mexico. Volume 2. Apocrita (Aculeata).  Washington, D.C.: Smithsonian Institution Pr (page 1386, see also)
 
*[[Media:Sokolova, Y.Y., Fuxa, J.R. 2008. Biology and life-cycle of the microsporidium Kneallhazia solenopsae from the fire ant Solenopsis invicta.pdf|Sokolova, Y.Y. & Fuxa, J.R. 2008. Biology and life-cycle of the microsporidium ''Kneallhazia solenopsae'' Knell Allan Hazard 1977 gen. n., comb. n., from the fire ant ''Solenopsis invicta''.  Parasitology 135, 903-929 (DOI 10.1017/S003118200800440X).]]
 
*[[Media:Sokolova, Y.Y., Fuxa, J.R. 2008. Biology and life-cycle of the microsporidium Kneallhazia solenopsae from the fire ant Solenopsis invicta.pdf|Sokolova, Y.Y. & Fuxa, J.R. 2008. Biology and life-cycle of the microsporidium ''Kneallhazia solenopsae'' Knell Allan Hazard 1977 gen. n., comb. n., from the fire ant ''Solenopsis invicta''.  Parasitology 135, 903-929 (DOI 10.1017/S003118200800440X).]]
Line 651: Line 710:
 
*[[Media:Tschinkel, W.R., Mikheyev, A.S. et al. 2003. Allometry of workers of the fire ant, Solenopsis invicta (10.1673@031.003.0201).pdf|Tschinkel, W.R., Mikheyev, A.S., Storz, S.R. 2003. Allometry of workers of the fire ant, ''Solenopsis invicta''. Journal of Insect Science 3(2): 1–11]] ({{doi|10.1673/031.003.0201}}).
 
*[[Media:Tschinkel, W.R., Mikheyev, A.S. et al. 2003. Allometry of workers of the fire ant, Solenopsis invicta (10.1673@031.003.0201).pdf|Tschinkel, W.R., Mikheyev, A.S., Storz, S.R. 2003. Allometry of workers of the fire ant, ''Solenopsis invicta''. Journal of Insect Science 3(2): 1–11]] ({{doi|10.1673/031.003.0201}}).
 
*[[Media:Tseng, S.-P. 2020. Evolutionary history of a global invasive ant, Paratrechina longicornis (10.14989@doctor.k22480).pdf|Tseng, S.-P. 2020. Evolutionary history of a global invasive ant, ''Paratrechina longicornis'' (Dissertation_全文 ). Ph.D. thesis, Kyoto University.]]
 
*[[Media:Tseng, S.-P. 2020. Evolutionary history of a global invasive ant, Paratrechina longicornis (10.14989@doctor.k22480).pdf|Tseng, S.-P. 2020. Evolutionary history of a global invasive ant, ''Paratrechina longicornis'' (Dissertation_全文 ). Ph.D. thesis, Kyoto University.]]
 +
*[[Media:Ulysséa, M.A., Brandão, C.R.F. 2013. Ant species from the seasonally dry tropical forest of northeastern Brazil (10.1590@S0085-56262013005000002).pdf|Ulysséa, M.A., Brandão, C.R.F. 2013. Ant species (Hymenoptera, Formicidae) from the seasonally dry tropical forest of northeastern Brazil: a compilation from field surveys in Bahia and literature records. Revista Brasileira de Entomologia 57, 217–224]] ({{doi|10.1590/s0085-56262013005000002}}).
 
*[[Media:Valles, S.M., Oliver, J.B. et al. 2021. Unique venom proteins from Solenopsis invicta x Solenopsis richteri hybrid fire ants (10.1016@j.toxcx.2021.100065).pdf|Valles, S.M., Oliver, J.B., Addesso, K.M., Perera, O.P. 2021. Unique venom proteins from ''Solenopsis invicta'' x ''Solenopsis richteri'' hybrid fire ants. Toxicon: X 9-10, 100065]] ({{doi|10.1016/j.toxcx.2021.100065}}).
 
*[[Media:Valles, S.M., Oliver, J.B. et al. 2021. Unique venom proteins from Solenopsis invicta x Solenopsis richteri hybrid fire ants (10.1016@j.toxcx.2021.100065).pdf|Valles, S.M., Oliver, J.B., Addesso, K.M., Perera, O.P. 2021. Unique venom proteins from ''Solenopsis invicta'' x ''Solenopsis richteri'' hybrid fire ants. Toxicon: X 9-10, 100065]] ({{doi|10.1016/j.toxcx.2021.100065}}).
 
*[[Media:Vandermeer, J., Perfecto, I. 2020. Endogenous spatial pattern formation from two intersecting ecological mechanisms (10.1098@rspb.2020.2214).pdf|Vandermeer, J., Perfecto, I. 2020. Endogenous spatial pattern formation from two intersecting ecological mechanisms: the dynamic coexistence of two noxious invasive ant species in Puerto Rico. Proceedings of the Royal Society B: Biological Sciences 287, 20202214]] ({{doi|10.1098/rspb.2020.2214}}).
 
*[[Media:Vandermeer, J., Perfecto, I. 2020. Endogenous spatial pattern formation from two intersecting ecological mechanisms (10.1098@rspb.2020.2214).pdf|Vandermeer, J., Perfecto, I. 2020. Endogenous spatial pattern formation from two intersecting ecological mechanisms: the dynamic coexistence of two noxious invasive ant species in Puerto Rico. Proceedings of the Royal Society B: Biological Sciences 287, 20202214]] ({{doi|10.1098/rspb.2020.2214}}).
 +
*[[Media:Vatanparast, M., Park, Y. 2021. Comparative RNA-Seq analyses of Solenopsis japonica reveal gene in response to cold stress (10.3390@genes12101610).pdf|Vatanparast, M., Park, Y. 2021. Comparative RNA-Seq analyses of ''Solenopsis japonica'' (Hymenoptera: Formicidae) reveal gene in response to cold stress. Genes 12, 1610]] ({{doi|10.3390/genes12101610}}).
 +
*[[Media:Wang, C., Billen, J. et al. 2019. Morphology and ultrastructure of the infrabuccal pocket in Camponotus japonicus (10.1007@s00040-019-00726-8).pdf|Wang, C., Billen, J., Wei, C., He, H. 2019. Morphology and ultrastructure of the infrabuccal pocket in Camponotus japonicus Mayr (Hymenoptera: Formicidae). Insectes Sociaux 66, 637–646]] ({{doi|10.1007/s00040-019-00726-8}}).
 
*Ward, D. 2009. The potential distribution of the red imported fire ant, ''Solenopsis invicta'' Buren (Hymenoptera: Formicidae), in New Zealand. New Zealand Entomologist 32: 67-75.
 
*Ward, D. 2009. The potential distribution of the red imported fire ant, ''Solenopsis invicta'' Buren (Hymenoptera: Formicidae), in New Zealand. New Zealand Entomologist 32: 67-75.
 
*Wheeler, G. C.; Wheeler, J. 1977a.  Supplementary studies on ant larvae: Myrmicinae. Trans. Am. Entomol. Soc. 103: 581-602 (page 588, larva described)
 
*Wheeler, G. C.; Wheeler, J. 1977a.  Supplementary studies on ant larvae: Myrmicinae. Trans. Am. Entomol. Soc. 103: 581-602 (page 588, larva described)

Latest revision as of 08:19, 3 December 2021

Solenopsis invicta
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Formicidae
Subfamily: Myrmicinae
Tribe: Solenopsidini
Genus: Solenopsis
Species group: saevissima
Species: S. invicta
Binomial name
Solenopsis invicta
Buren, 1972

Solenopsis invicta casent0005804 profile 1.jpg

Solenopsis invicta casent0005804 dorsal 1.jpg

Specimen labels

Synonyms

Stefan Cover (EOL) - The Red Imported Fire Ant (Solenopsis invicta) is a native of tropical and subtropical South America that has achieved international notoriety by becoming an enormously successful invasive ant throughout much of the southern United States. S. invicta is now spreading rapidly in parts of the Caribbean, and new infestations have been detected and exterminated in Arizona, California, Australia, New Zealand, and southern China. The probability of new invasions is therefore quite high and S. invicta must be considered a potential threat worldwide in all areas where climates are suitable.

Invasive populations of Solenopsis invicta are by no means easy to ignore. They have been linked to a multitude of destructive effects, including stinging humans, agricultural and horticultural damages, and substantial negative impacts on native faunas and floras. This has resulted in social and political pressure on governments to "solve" the fire ant problem. Government involvement in fire ant research developed first in the United States, which has an 80 year history of Imported Fire Ant infestation, but other governments have more recently begun research and control efforts of their own.

In the US, federal and state governments have responded primarily by funding research and by developing detection and infestation prevention programs. There have also been expensive and ecologically disasterous attempts to exterminate entire Imported Fire Ant populations. On the brighter side, over the course of fifty years, federal and state funding agencies have underwritten a plethora of research programs that have examined in detail the behavior, ecology, life-history, genetics, and potential controls for Solenopsis invicta. As a result, S. invicta has become in some sense the Drosophila melanogaster of the ant world. We probably know more about its biology than is known for any other species of ant. Despite this, our ability to control large-scale infestations remains limited.

At a Glance • Supercolonies  • Facultatively polygynous  • Diploid male  

 

Photo Gallery

  • Solenopsis invicta. A fire ant male runs in a column of workers. Austin, Texas, USA. Photo by Alex Wild.

Identification

Pitts et. al. (2018) - A member of the Solenopsis saevissima species-group. As noted with the workers (Trager 1991; J. Pitts and K. R. Ross, pers. obs.), the gynes are highly variable in color. The darker variants of gynes are found in southeastern Brazil to Uruguay and Argentina and are associated with the darker workers. A lighter variant occurs in the northern area of the species’ range. The gynes and workers of these colonies are also similar in coloration. A third variant, a light orange form, is found in the Pantanal region of Brazil. This form has larger workers and gynes. No morphological differences could be found between these forms, other than size and coloration.

The darker colored gynes of S. invicta look most similar to Solenopsis megergates and Solenopsis quinquecuspis. However, the CI and OI of S. invicta gynes are normally smaller than those of S. megergates and the OI of S. invicta is normally smaller than that of S. quinquecuspis. The lighter gynes of S. invicta look similar to Solenopsis richteri and Solenopsis interrupta. The gynes of S. interrupta normally are lighter in coloration than S. invicta, have larger cephalic foveolae, and sometimes have distinct striations between the foveolae. The OOI of S. invicta gynes is normally greater than that of S. richteri, and the postpetiole of S. invicta gynes has straight sides, unlike the concave sides of S. richteri. In many cases, the sculpture of the mandible and postpetiole can help separate S. invicta gynes from similar species. The gynes of S. invicta normally have the most densely sculptured postpetiole compared to the other species.

The male of S. invicta is dark in coloration and is similar to most of the other darker species. The pubescence of the S. invicta male is longer and denser than that of Solenopsis saevissima. Sometimes the head of the S. invicta male is shagreened as in S. interrupta. The gena of the male is much more sculptured than in other species. In moderate to extreme forms, this feature is easily recognized and it may be autapomorphic for S. invicta.

Buren (1972) - Similar to Solenopsis richteri. The best and easiest method of distinguishing invicta from richteri is by the morphological characters given in the descriptions, particularly those concerning the shapes of the head, thorax, and postpetiole. Reiterated, in richteri the sides of the head are usually broadly elliptical in shape and lack the weakly cordate shape seen in invicta; the peaks of the occipital lobes nearer the midline and the occipital excision more creaselike in richteri than in invicta; scapes longer in richteri than in invicta in relation to their ability to reach toward the occipital peaks; pronotum with strong and rather angulate shoulders in richteri, this character nearly absent in invicta; a shallow but distinctly sunken area on posterior median dorsum of the pronotum of large workers in richteri, absent in large workers of invicta; the promesonotum strongly convex in profile in invicta, more weakly so in richteri; in profile the base of propodeum elongate and straight in richteri, convex and shorter in proportion to the declivity in invicta; the postpetiole wide and with straight or diverging sides posteriorly in invicta, narrower and usually with converging sides in richteri; transverse impression on posterodorsal face of postpetiole usually apparent and strong in richteri, usually weak or absent in invicta.

Keys including this Species

Distribution

Solenopsis invicta is a native of South America, centered on the Pantanal region found at the headwaters of the Paraguay River. This area is comprised of seasonally flooded savannas and wetlands. Solenopsis invicta first became noticed as pest species after its introduction in Mobile, Alabama in the 1930's. This introduction was thought to have its origins from a cargo ship from somewhere in NE Argentina. It is also possible there were numerous introductions. The fire ant is now found throughout the SE United States and California. It has subsequently been introduced and spread to other parts of the world as well (as detailed below).

Pitts et. al. (2018) - The range of Solenopsis invicta in South America currently extends from as far north as Porto Velho, Rondonia State, Brazil and eastward from Peru and Bolivia to Cuiaba, Mato Grosso State, Brazil, southward to Santiago del Estero Province of Argentina, through Uruguay to Sao Paulo State, Brazil. Its range in North America includes the Gulf States west to Texas. It is found sporadically in New Mexico and Arizona and apparently is well established in California. It recently has been introduced to Australia, Taiwan, China, and Japan (Henshaw et al. 2005; Ascunce et al. 2011). A comprehensive assessment of genetic variation for colonies sampled from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta occurred into newly invaded areas and that the main southern U.S. population is probably the source of these secondary introductions (Ascunce et al. 2011).


Latitudinal Distribution Pattern

Latitudinal Range: -2.58029° to -39.8°.

     
North
Temperate
North
Subtropical
Tropical South
Subtropical
South
Temperate

Distribution based on Regional Taxon Lists

Australasian Region: Australia.
Indo-Australian Region: Hawaii.
Nearctic Region: United States (type locality).
Neotropical Region: Anguilla, Antigua and Barbuda, Argentina, Aruba, Brazil (type locality), British Virgin Islands, Cayman Islands, Greater Antilles, Mexico, Montserrat, Netherlands Antilles, Paraguay, Puerto Rico, Saint Martin (French part), Trinidad and Tobago, Turks and Caicos Islands, United States Virgin Islands.
Palaearctic Region: China.

Distribution based on AntMaps

AntMapLegend.png

Distribution based on AntWeb specimens

Check data from AntWeb

Biology

There is an Antwiki webpage with a list of some recent publications about the imported fire ant.

Roeder et al. (2018) in an Oklahoma study found the CTmax (critical thermal maximum) for this species was 49.0 ± 0.4 C. They also found the imported fire ant was able to forage for 18 hours per summer day and occupied baits at a higher total biomass than 4 co-occurring native species.

Buren (1972) - The sting venon constituents of invicta (MacConnell et af. 1971) appear to consist largely of the following alkylated piperidines; trans-2-methyl-6-nundecylpiperidine, trans-2-methyl-6-n-tridecylpiperidine, trans-2-methyl-6-(cis-4-tridecenyl) piperidine, trans-2-methyl-6-n-pentadecylpiperidine, and trans-2- methyl-6- (cil'-6-pentadecenyl) piperidine, of which the last four predominate. These constituents are different from those of richteri, in which the first 3 listed compounds predominate, and the last two are essentially lacking. (Unpublished data of Dr. John Brand and Dr. Murray Blum, Department of Entomology, University of Georgia).

Genetics

Solenopsis invicta has had their entire genome sequenced.

Palomeque et al. (2015) found class II mariner elements, a form of transposable elements, in the genome of this ant.

Florida

Deyrup, Davis & Cover (2000): Solenopsis invicta, although a major ecological and economic problem through out Florida, does not seem to live up to its potential as a pest, especially compared to the situation in Texas. Heavy outbreaks of S. invicta in Florida seem to require constant maintenance by humans in the form of perennial habitat disturbance and, on upland sites, frequent irrigation. The sand soils characteristic of most of Florida maybe suboptimal for S. invicta because sand drains quickly and is also permeable to a great variety of burrowing animals, some of which might be enemies of ants. Tschinkel has suggested (1988) that subterranean Solenopsis of the subgenus Diplorhoptrum might reduce populations of S. invicta in sandy uplands. Since S. invicta originates in habitats where the soil is periodically saturated, forcing the fire ants themselves to build elevated nests, it seems logical that this ant would better adapted to defend itself against enemies from above rather than enemies from below.

Flight Period

X X X X
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Source: antkeeping.info.

Association with Other Organisms

Coleoptera

  • Myrmecosaurus ferrugineus (Staphylinidae: Paederinae) is known from nests in Mississippi, USA (MacGown, 2006).

Diptera

The following phorid flies have been reported with this species by Sanchez-Restrepo et al. (2020):

  • Pseudacteon cultellatus (Argentina, Brazil)
  • Pseudacteon curvatus (Argentina, Brazil)
  • Pseudacteon litoralis (Argentina, Brazil, Paraguay)
  • Pseudacteon nocens (Argentina, Brazil)
  • Pseudacteon nudicornis (Argentina)
  • Pseudacteon obtusitus (Argentina, Uruguay)
  • Pseudacteon obtusus (Argentina)
  • Pseudacteon pradei (Brazil)
  • Pseudacteon solenopsidis (Argentina)
  • Pseudacteon tricuspis (Argentina, Brazil)
  • Pseudacteon wasmanni (Brazil)

Hymenoptera

  • This species is a host for the eucharitid wasp Orasema sp. (a parasite) (Universal Chalcidoidea Database) (associate, primary host).
  • This species is a host for the eucharitid wasp Orasema salebrosa (a parasite) (Heraty et al., 1993; Varone et al., 2010; Baker et al., 2019; Universal Chalcidoidea Database) (primary host).
  • This species is a host for the eucharitid wasp Orasema simplex (a parasite) (Heraty et al., 1993; Varone et al., 2010; Baker et al., 2019; Universal Chalcidoidea Database) (primary host).
  • This species is a host for the eucharitid wasp Orasema xanthopus (a parasite) (Silveira-Guido et al., 1964; Heraty et al., 1993; Varone et al., 2010; Baker et al., 2019; Universal Chalcidoidea Database) (primary host).

Strepsiptera

  • This species is a host for the strepsipteran Caenocholax fenyesi (a parasite) in United States (Texas) (Kathirithamby & Johnston, 1992; Cook, 2019).

Gregarine

  • This species is a host for the gregarine Mattesia species (a parasite) in United States (Florida) (Pereira et al., 2002).

Fungi

  • This species is a host for the fungus Myrmicinosporidium durum (a pathogen) in United States (Pereira, 2004; Espadaler & Santamaria, 2012).
  • This species is a host for the microsporidian fungus Kneallhazia solenopsae (a pathogen) (Ascunce et al. 2010).
  • This species is a host for the microsporidian fungus Vairimorpha invictae (a pathogen) (Jouvenaz & Ellis, 1986; Sokolova & Fuxa, 2008).
  • This species is a host for the microsporidian fungus Thelohania solenopsae (a pathogen) (Knell et al. 1977; Sokolova & Fuxa, 2008).

Nematodes

  • This species is a host for the nematode Allomermis solenopsi (a parasite) in Argentina (Poinar et al., 2007; Laciny, 2021).
  • This species is a host for the nematode Steinernema carpocapsae (a parasite) (Poinar, 2012).
  • This species is a host for the nematode Tetradonema solenopsis (a parasite) in Brazil (Nickle & Jouvenaz, 1987).
  • This species is a host for the nematode Mermithidae (unspec.) (a parasite) in USA, Florida (McInnes & Tschinkel, 1996; Laciny, 2021).

Life History Traits

  • Queen number: monogynous (Rissing and Pollock, 1988; Frumhoff & Ward, 1992) (locally polygynous)
  • Queen mating frequency: single (Rissing and Pollock, 1988; Frumhoff & Ward, 1992)
  • Colony type: supercolony
  • Foraging behaviour: mass recruiter (Wilson, 1962; Tschinkel, 1987; Beckers et al., 1989)

Castes

Worker

Economo-header (arilab.unit.oist.jp).png  X-ray micro-CT scan 3D model of Solenopsis invicta (minor worker) prepared by the Economo lab at OIST.

Minor worker. See on Sketchfab. See list of 3D images.

Economo-header (arilab.unit.oist.jp).png  X-ray micro-CT scan 3D model of Solenopsis invicta (major worker) prepared by the Economo lab at OIST.

Major worker. See on Sketchfab. See list of 3D images.

Queen

Male

Diploid males are known to occur in this species (found in 13.1% of nests within native populations, 83.3% of 150 examined nests in introduced populations) (Ross et al., 1993; Krieger et al., 1999; Cournault & Aron, 2009).

Nomenclature

The following information is derived from Barry Bolton's Online Catalogue of the Ants of the World.

  • invicta. Solenopsis invica Buren, 1972: 9, fig. 2 (w.q.m.) BRAZIL (Mato Grosso), U.S.A. (Alabama).
    • [Note: the misspelling invica occurs in the title of the species, but the name is spelled correctly, invicta, on previous pages 1-8, as well as on subsequent pages and in figure captions.]
    • Type-material: holotype worker, paratype workers (number not stated).
    • Type-locality: Brazil: Mato Grosso, Cuiaba, 16.ii.1971 (W. Whitcomb & R. Williams); paratypes: workers “numerous” with same data, workers “several additional colonies”, ii.1971 (W. Whitcomb & R. Williams), 10 workers Mato Grosso, Chapada (no collector’s name), workers (number not stated) U.S.A.: Alabama, Daphne (W.F. Buren), Alabama, nr Mobile (W.F. Buren).
    • Type-depositories: USNM (holotype); FSCG, MCZC, UGAA, USNM (paratypes).
    • Wheeler, G.C. & Wheeler, J. 1977a: 588 (l.).
    • Junior synonym of wagneri: Bolton, 1995b: 388.
    • [Note: Trager, 1991: 173, cited wagneri as an unavailable (infrasubspecific) name, but the name was available and had priority over invicta (see under wagneri). S. invicta was later conserved over wagneri because of usage, in accord with ICZN (1999): Shattuck, Porter & Wojcik, 1999: 27.]
    • Status as species: Rhoades, 1977: 1; Smith, D.R. 1979: 1386; Deyrup, et al. 1989: 96; Brandão, 1991: 378; Trager, 1991: 173 (redescription); Deyrup, et al. 2000: 298; Mackay & Mackay, 2002: 229; Deyrup, 2003: 47; MacGown & Forster, 2005: 70; Ward, 2005: 36; Wild, 2007b: 36; Don, 2007: 198; Terayama, 2009: 157; Guénard & Dunn, 2012: 53; Wetterer, 2013c: 50; Bezděčková, et al. 2015: 122; Deyrup, 2017: 105; Pitts, et al. 2018: 343 (redescription).
    • Distribution: Anguilla, Antigua, Argentina, Aruba, Bahamas, Barbuda, Bolivia, Brazil, Cayman Is, Jamaica, Paraguay, Peru, Puerto Rico, St Kitts, St Martin, Montserrat, Nevis, Trinidad, Uruguay, U.S.A., Virgin Is
    • [Note: also as introduction in Australia, China, Japan, New Zealand, Philippines, Taiwan.]
  • wagneri. Solenopsis saevissima var. wagneri Santschi, 1916e: 380 (w.) ARGENTINA (Santiago del Estero).
    • Type-material: syntype workers (number not stated).
    • Type-locality: Argentina: Santiago del Estero, vic. Icañu (E.R. Wagner).
    • Type-depository: NHMB.
    • As unavailable (infrasubspecific) name: Emery, 1922e: 198; Creighton, 1930b: 94.
    • Subspecies of saevissima: Santschi, 1919f: 43; Santschi, 1923c: 266.
    • Junior synonym of saevissima: Wilson, 1952b: 55; Kempf, 1972a: 239.
    • Status as species: Bolton, 1995b: 391.
    • Senior synonym of invicta: Bolton, 1995b: 391.
    • [Note: Trager, 1991: 173, cited wagneri as an unavailable (infrasubspecific) name (incorrectly citing its original notation as S. saevissima subsp. electra var. wagneri), and referred the material to invicta. But wagneri was available, with the original notation cited above, and had priority over invicta. S. invicta was later conserved over wagneri because of usage, in accord with ICZN (1999): Shattuck, Porter & Wojcik, 1999: 27.]

Type Material

  • Holotype, worker, Cuiaba, Mato Grosso, Brazil, National Museum of Natural History.
  • Paratype, 6 workers, 42km SE Cuiaba and Chapada (both Mato Grosso), Brazil, Museum of Comparative Zoology.
  • Paratype, 6 workers, Daphne and near Mobile, Alabama, United States, Museum of Comparative Zoology.
  • Paratype, workers, Cuiaba, Mato Grosso, Brazil, National Museum of Natural History.
  • Paratype, workers, 42km SE Cuiaba and Chapada (both Mato Grosso), Brazil, Univ. of Florida.
  • Paratype, workers, Daphne and near Mobile, Alabama, USA, United States, Univ. of Florida.
  • Paratype, workers, 42km SE Cuiaba and Chapada (both Mato Grosso), Brazil, Univ. of Georgia.
  • Paratype, workers, Daphne and near Mobile, Alabama, USA, United States, Univ. of Georgia.

Unless otherwise noted the text for the remainder of this section is reported from the publication that includes the original description.

Description

Worker

Buren (1972) - Head length .77 to 1.41 mm, about 1.35 to 1.40 in majors; width .65 to 1.43 mm, about 1.39 to 1.42 mm in majors. Scape length .96 to 1.02 mm. in majors. Thoracic length 1.70 to 1.73 mm. in majors.

Head wider behind eyes, with rounded occipital lobes, lobe peaks further from the midline than in Solenopsis richteri, but occipital excision not as creaselike. Scapes in majors failing to reach occipital peaks in full face view by 1 or 2 scape diameters, a more noticeable space than in richteri. Scapes meeting occipital border in medium sized workers, slightly exceeding rear border in small workers. Head with more elliptical sides in medium or small medium workers. Only the small workers have the head slightly wider in front than behind.

Thorax of majors; pronotum without angular shoulders or a sunken posteromedian area. In profile the promesonotum evenly and strongly convex, and the base of the propodeum also usually convex and rounded rather evenly into the declivity; base and declivity in profile about equal in length in very large workers. Promesonotal suture moderately strong to rather weak centrally in large workers.

Petiole with thick, blunt scale; seen from behind the scale is usually not as evenly rounded above as in richteri and may be subtruncate, but this character variable. Postpetiole large and broad, in very large workers much broader than long; seen posterodorsally, sides parallel or nearly so, in very large workers often broader behind than in front; transverse impression on rear dorsal surface present or very feeble, usually noticeably weaker than in richteri.

Sculpture similar to richteri; punctures from which the pilosity arises often shallowly elongate on dorsal and ventral sides of head; sculptured areas on cheeks in frorit of eyes less striate and more irregularly rugose than in richteri. Striae on sides of thorax less deeply etched and with fewer intercalated punctures than in richteri. Mesopleura with anteroventral portion of striate area usually obliterated and nearly smooth and shining in major workers. Petiole punctate on the sides. Postpetiole from above with strong shagreen anteriorly, medially and posteriorly with distinct transverse punctostriae, sides covered with fine, deep punctures, these appearing to be individually smaller but deeper than those in richteri, giving a more opaque appearance to this surface; some punctostriae may be present toward the rear.

Pilosity very similar to that of richteri; erect hairs numerous and of various lengths; some very long hairs always present on each side of pronotum and mesonotum and in longitudinal rows on head; appressed pubescent hairs on anterior face of the petiolar scale moderately numerous, apparently always sparse in richteri.

Gastric spot present only in some of the large workers, never as brightly colored as in richteri, usually occupying a smaller area on first gastric tergite, and with rather indistinct posterior border. Remainder of gaster very dark brown, in some large workers nearly black. Thorax concolorously light reddish brown to darker brown; legs, including coxae, usually of a lighter shade. Head with rather constant color pattern in large workers; occiput and vertex brownish as in the thorax, but the larger portion of head, including front, genae, and central body of the clypeus, yellowish or light yellowish brown; venter of head also usually light yellowish brown. Mandibles and anterior border portions of the genae dark brown or of about the same shade as the occiput; a small dark brown arrowshaped or “rocket”-shaped mark centrally on front. Scapes and funiculi varying from matching the light colored area of the head to the same shade as occiput. In minors and medium sized workers, light colored area of the head restricted to frontal area, with dark arrow or rocket-shaped mark nearly always present. An occasional nest series with colors very much darker than described, large workers without trace of gastric spot and nearly concolorously very dark brown. Even in these specimens, the head similar to or approaching color patterns described above.

Pitts et. al. (2018) - Head subquadrate to weakly cordate. Head of largest specimens cordate. Sculpture of head and mesosomal dorsum with small piligerous foveolae, <0.01 mm in diameter. Median frontal streak present. Median ocellus in largest major workers absent. Mandibular costulae absent medially, distinct apically and basally along outer border. Mesonotum with 20–25 setae. Mesonotum with anteromedian margin in largest major workers gently curved. Mesonotum in lateral view convex. Propodeum sculpture glabrous posteroventral to spiracle. Postpetiole shape in posterior view width greater than height. Postpetiole in posterior view with lower 0.66 or greater transversely rugose to punctate-rugose, extreme dorsum nitid, granulate. Color generally with head and mesosoma yellow red to dark red brown, gaster brown, T1 with maculation yellow red to concolorous with surrounding integument.

Queen

Buren (1972) - Head length 1.27 to 1.29 mm; width 1.32 to 1.33 mm; scapes .95 to .98mm. and thorax 2.60 to 2.63 mm. in length.

Head nearly indistinguishable in shape from richteri, except that the occipital excision is not as crease-like. The scapes appear slightly shorter in general than in richteri. Petiolar scale much as in richteri, very convex above, seen from behind. Postpetiole with rather straight sides, seen from above, the sides never concave, unlike richteri. Sculpture of thorax not appreciably different from richteri, clear space between metapleural striate area and propodeal spiracles absent or reduced to a narrow crease. Sides of petiole punctate. Sides of postpetiole opaque with fine punctures, without much of the irregular roughening seen in richteri; anterior portion of dorsum strongly shagreend; middle and rear portion with distinct, tranverse puncto-striae. Erect hairs present on all surfaces. Anterior faces of petiole and pqstpetiole with dense matts of appressed pubescence, similar pubescent matts usually present on rear surface of propodeum.

Colors similar to worker. Gaster very dark brown. Thorax, legs, and scapes light brown, often with three longitudinal very dark streaks on mesoscutum. Head yellowish or yellowish brown centrally, occiput and mandibles approximately matching thorax. Wing veins very pale brown.

Pitts et. al. (2018) - Head. Slightly broader than long, quadrate, wider dorsal to eyes than ventral to them, sides of head convex from eyes to occipital angles, straight to nearly straight ventral to eyes. Eyes sometimes with 2–10 setae protruding from between ommatidia, setal length ≤ 3X width of ommatidium. Median ocellus large, prominent, circular. Lateral ocelli moderate to large, slightly ovate. Clypeus projecting, carinal teeth stout and sharp, carinae well defined, less so dorsally, slightly divergent ventrally. Paracarinal teeth small, sometimes poorly defined. Median clypeal tooth well developed. Approximately 0.50 of eye dorsal to midpoint of head. Antennal scape in repose surpasses lateral ocellus.

Mesosoma. Parapsidal lines present on posterior 0.50 of disk. Mesonotum with indistinct, median furrow on posterior one-sixth or less. Bidentate median process present on metasternum.Wing venation as in Fig.

Metasoma. Lateral faces of postpetiole slightly concave to wider ventrally. Petiolar and postpetiolar spiracles slightly tuberculate to not tuberculate.

Coloration, Sculpturing, and Pilosity. Piligerous foveolae small, sparse, width <0.01 mm in diameter, larger on head than on thorax and abdomen. Pubescence simple, golden and erect, longer and denser on head than elsewhere, longest on anterior edge of clypeus. Mesosoma with longest pubescence (length ≤ 0.25 mm) 2X longer than shortest pubescence. Mandible with 9–11 fine, distinct, costulae, sometimes costulae obsolescent medially. Propodeum with fine striae throughout. Petiolar nodes with lower 0.75 finely striate; granulate throughout. Postpetiole usually with 12–18 striations, often transverse, other times appearing to create swirling or circular patterns. Remaining integument smooth and polished. Color varies from red brown to brown red on dorsum of head, dorsum of thorax, and katepisternum of mesopleuron. Gaster brown. Sometimes on lighter colored individuals, bases of T1 and S1 are somewhat orange blending to brown apically. Brown maculations sometimes present anteromedially and on parapsidal lines. Median streak present, weak, sometimes indistinct or absent. Internal margins of ocelli often dark brown.

L ~5.9–8.3, HW 1.30–1.46, VW 0.66–0.88, HL 1.18–1.43, EL 0.38–0.49, OD 0.10–0.18, OOD 0.19–0.26, LOW 0.08–0.15, MOW 0.16–0.24, CD 0.15–0.22, MFC 0.15–0.25, EW 0.25–0.48, SL 0.78–1.11, PDL 0.13–0.25, LF1 0.08–0.14, LF2 0.07–0.10, LF3 0.07–0.12, WF1 0.06–0.11, FL 0.94–1.26, FW 0.22–0.36, MW 1.14–1.48, DLM 2.42–2.73, PRH 0.88–1.19, PL 0.72–0.83, PND 0.56–0.84, PH 0.57–0.78, PPL 0.24–0.42, DPW 0.51–0.74, PPW 0.71–0.77, PHB 0.26–0.48, N=25.

Male

Buren (1972) - Not appreciably different from male of richteri; upper border of petiolar scale appearing more strongly concave, seen from behind, but there probably is overlap in this character. As in both species, the spiracles of the petiole and post petiole are strongly projecting.

Concolorous black expect for the whitish antennae. Wing veins colorless to very pale brown.

Pitts et. al. (2018) - Head. Eyes sometimes with 2–10 setae protruding from between ommatidia, setal length ≤ 3X width of ommatidium. Ocelli large and prominent, elliptical.

Mesosoma. Propodeum rounded, declivous face perpendicular, flat except with distinct to indistinct median longitudinal depression, basal face strongly convex transversely and longitudinally. Metapleuron not broad, ~0.33 as wide as high, sometimes with transverse posterior carina. Wing venation as in Fig.

Metasoma. In cephalic view, dorsum of node with shallow to deep median impression and weakly to strongly bilobate. Petiolar and postpetiolar spiracles distinctly tuberculate to not tuberculate.

Coloration, Sculpturing, and Pilosity. Pubescence short, sparse, yellow to brown, erect to suberect (0.20–0.30 mm), longest on gena and vertex. Mesonotal pubescence dense. Propodeum with base striato-granulate, medially finely granulate. Area between eye and insertion of antenna, posterior portion of metapleuron, lateral faces of scutellum, and base of petiolar node granulate to striatogranulate. Posterior surface of postpetiolar node granulate throughout, rugae present dorsomedially. Area between ocelli weakly to coarsely striato-granulate. Gena coarsely rugose to coarsely striato-granulate. Head often completely granulate, shagreened, dull. Remaining integument smooth and polished. Color red brown to black with antenna completely yellow, sometimes scape and pedicel brown. Mandibles brown to light brown.

L ~5.4–6.3, HW 0.91–1.08, VW 0.30–0.40, HL 0.67–0.83, EL 0.37–0.53, OD 0.06–0.11, OOD 0.18–0.26, LOW 0.09–0.18, MOW 0.10–0.17, CD 0.16–0.24, MFC 0.13–0.18, EW 0.28–0.39, SL 0.16–0.20, SW 0.09–0.14, PDL 0.06–0.10, PEW 0.10–0.15, LF1 0.10–0.17, LF2 0.13–0.15, LF3 0.12–0.16, WF1 0.07–0.10, FL 1.00–1.15, FW 0.15–0.20, MW 1.20–1.68, DLM 2.27–2.64, PRH 0.78–1.04, PL 0.62–0.69, PND 0.54–0.61, PH 0.44–0.56, PPL 0.20–0.28, DPW 0.55–0.71, PPW 0.58–0.69, PHB 0.14–0.28, N=25.

Larva

Pitts et. al. (2018) - Fourth instar worker larva.—Head. Large, subpyriform in anterior view (height 0.50 mm, width 0.54 mm). Cranium slightly wider than long. Antenna with 2 or 3 sensilla, each with 1 spinule. Integument of head with minute spinules. Occipital setal row normally with 6–8 bifid setae, base ;0.66X total length of seta, setae 0.08–0.10 mm long. First setal row on vertex with 2 bifid setae, base ;0.66X total length of seta, 0.05–0.07 mm long. Second setal row on vertex with 4–6 simple setae, ;0.10 mm long. Setae anterior to antenna level simple, 0.08–0.14 mm long. Clypeus with transverse row of 4 setae, inner setae shorter than outer setae, 0.06–0.08 mm long. Labrum small, short (width 2.5X length). Labrum with 4–6 minute sensilla and 2 setae on dorsal surface of each half and apex with 4–6 sensilla on each half. Each half of the epipharynx with 2–3 isolated and 2 contiguous sensilla. Straight medial portion of mandible with 2–5 teeth that decrease in size dorsally. Maxilla with apex conical, palpus peg-like with 5 sensilla, each bearing one spinule. Galea conical with 2 apical sensilla bearing spinules. Maxilla with sclerotized band between cardo and stipes. Labium with patches of spinules dorsal to each palpus, in 2–3 rows. Labial palpus slightly elevated with 5 sensilla, each bearing one spinule.

Body. Stout. Spiracles small, first spiracle larger than others. Body setae of 2 types. Simple setae (0.06–0.11 mm long) arranged in transverse row of 6–12 on ventral surface of each thoracic somite and on each of 3 anterior abdominal somites, some with short denticulate tips. Bifid setae (0.06–0.09 mm long) occur elsewhere, base ~0.5X length.

Length. About 3.1 mm.

Fourth instar worker larva (O-18).— Head. Large, subpyriform in anterior view. Cranium slightly broader than long. Antenna with 2 or 3 sensilla, each bearing spinule. Integument of head with minute spinules. Occipital setal row with 4–6 setae (0.06–0.08 mm long), median pair simple, other setae bifid with base 0.66–0.75X total length of seta. First setal row on vertex with 2 simple setae,;0.09 mm long. Second setal row on vertex with 2 simple setae, 0.10–0.12 mm long. Setae ventral to antenna level simple, 0.09–0.12 mm long. Clypeus with transverse row of 4 setae, inner setae shorter than outer setae, 0.05–0.10 mm long. Labrum small, short (width 1.8X length), slightly narrowed medially. Labrum with 5 minute sensilla and 2 setae on anterior surface of each half and ventral border with 6 sensilla on each half. Each half of posterior surface of labrum with 2–3 isolated sensilla. Straight medial portion of mandible with 2–5 teeth that decrease in size basally. Maxilla with apex conical, palpus peg-like with 5 sensilla, each bears one spinule. Galea conical with 2 apical sensilla. Labium with patch of spinules dorsal to each palpus, spinules coarse and isolated or in short rows of 2–3. Labial palpus slightly elevated with 5 sensilla, each bearing one spinule.

Body. Spiracles small, first spiracle larger than others. Body setae of 2 types. Simple setae (0.07–0.12 mm long) arranged in transverse rows of 6–9 on ventral surface of each thoracic somite and on each of 3 anterior abdominal somites, some with short denticulate tips. Bifid setae (0.08–0.12 mm long) occur elsewhere, base ≤ 0.33X length, branches more or less perpendicular to base, tips recurved.

Length. 2.7–2.9 mm.

Karyotype

  • n = 16, 2n = 32 (USA) (Glancey et al., 1976).

Worker Morphology

References

References based on Global Ant Biodiversity Informatics

  • Bezdeckova K., P. Bedecka, and I. Machar. 2015. A checklist of the ants (Hymenoptera: Formicidae) of Peru. Zootaxa 4020 (1): 101–133.
  • Brandao, C.R.F. 1991. Adendos ao catalogo abreviado das formigas da regiao neotropical (Hymenoptera: Formicidae). Rev. Bras. Entomol. 35: 319-412.
  • Buren W. F. 1972. Revisionary studies on the taxonomy of the imported fire ants. Journal of the Georgia Entomological Society 7: 1-26.
  • Buren W. F. 1982. Red imported fire ant now in Puerto Rico. Florida Entomologist 65: 188-189.
  • Calcaterra L. A., S. M. Cabrera, F. Cuezzo, I. J. Perez, and J. A. Briano. 2010. Habitat and Grazing Influence on Terrestrial Ants in Subtropical Grasslands and Savannas of Argentina. Annals of the Entomological Society of America 103(4): 635-646.
  • Canepuccia A. D., F. Hidalgo, J. L. Farina, F. Cuezzo, and O. O. Iribarne. 2016. Environmental harshness decreases ant β-diversity between salt marsh and neighboring upland environments. Wetlands DOI 10.1007/s13157-016-0777-0.
  • Costa-Milanez C. B., G. Lourenco-Silva, P. T. A. Castro, J. D. Majer, and S. P. Ribeiro. 2014. Are ant assemblages of Brazilian veredas characterised by location or habitat type? Braz. J. Biol. 74(1): 89-99.
  • Creighton W. S. 1930. The New World species of the genus Solenopsis (Hymenop. Formicidae). Proceedings of the American Academy of Arts and Sciences 66: 39-151.
  • Drose W., L. R. Podgaiski, C. Fagundes Dias, M. de Souza Mendonca. 2019. Local and regional drivers of ant communities in forest-grassland ecotones in South Brazil: A taxonomic and phylogenetic approach. Plos ONE 14(4): e0215310.
  • Feener Jr., D.H., M.R. Orr, K.M. Wackford, J.M. Longo, W.W. Benson and L.E. Gilbert. 2008. Geographic Variation in Resource Dominance-Discovery in Brazilian Ant Communities. Ecology 89(7):1824-1836
  • Gazzana Flores D., C. L. Goettert, E. Diehl. 2002. Ant communities in Inga marginata and Jacaranda micrantha in a sub-urban area. Acta Biologica Leopoldensia 24(2): 147-155.
  • LeBrun, E.G., C. V. Tillberg, A. V. Suarez, P. J. Folgarait, C. R. Smith and D. A. Holway. 2007. An Experimental Study of Competition between Fire Ants and Argentine Ants in Their Native Range. Ecology 88(1):63-75
  • Lutinski J. A., B. C. Lopes, and A. B. B.de Morais. 2013. Diversidade de formigas urbanas (Hymenoptera: Formicidae) de dez cidades do sul do Brasil. Biota Neotrop. 13(3): 332-342.
  • Nogueira Rossi M., and H. G. Fowler. 2004. Predaceous Ant Fauna in New Sugarcane Fields in the State of São Paulo, Brazil. Brazilian Archives of Biology and Technology 47(5): 805-811.
  • Pereira M. C., J. H. C. Delabie, Y. R. Suarez, and W. F. Antonialli Junior. 2013. Spatial connectivity of aquatic macrophytes and flood cycle influence species richness of an ant community of a Brazilian floodplain. Sociobiology 60(1): 41-49.
  • Pesquero M. A., and A. M. Penteado-Dias. 2004. New records of Orasema xanthopus (Hymenoptera: Eucharitidae) and Solenopsis daguerrei (Hymenoptera: Formicidae) from Brazil. Braz. J. Biol., 64(3B): 737.
  • Pitts J. P., G. P. Camacho, D. Gotzek, J. V. Mchugh, and K. G. Ross. 2018. Revision of the fire ants of the Solenopsis saevissima species-group (Hymenoptera: Formicidae). Proceedings of the Entomological Society of Washington 120(2): 308-411.
  • Porter, S.D., S.M. Valles, T.S. Davis, J.A. Briano, L.A. Calcaterra, D.H. Oi and R.A. Jenkins. 2007. Host Specificity of the Microsporidian Pathogen Vairimorpha Invictae at Five Field Sites with Infected Solenopsis Invicta Fire Ant Colonies in Northern Argentina. The Florida Entomologist 90(3):447-452
  • Raci N., C. Sravanthy, C. Sammaiah, and M. Thirupahaiah. 2015. Biodiversity of ants (Insecta-Hymenoptera) in agroecosystem and grass land in Jammikunta, Karimnagar District, Telangana, India. Journal ofEnvironment 4(1): 11-16.
  • Ribas C. R., F. A. Schmidt, R. R. C. Solar, R. B. F. Campos, C. L. Valentim, and J. H. Schoereder. 2012. Ants as Indicators of the Success of Rehabilitation Efforts in Deposits of Gold Mining Tailings. Restoration Ecology 20(6): 712–722.
  • Ribas C. R., R. R. C. Solar, R. B. F. Campos, F. A. Schmidt, C. L. Valentim, and J. H. Schoereder. 2012. Can ants be used as indicators of environmental impacts caused by arsenic? Insect Conserv 16: 413–421.
  • Santoandre S., J. Filloy, G. A. Zurita, and M. I. Bellocq. 2019. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. Forest Ecology and Management 437: 304-313.
  • Santos-Junior L. C., J. M. Saraiva, R. Silvestre, and W. F. Antonialli-Junior. 2014. Evaluation of Insects that Exploit Temporary Protein Resources Emphasizing the Action of Ants (Hymenoptera, Formicidae) in a Neotropical Semi-deciduous Forest. Sociobiology 61(1): 43-51
  • Santschi F. 1916. Formicides sudaméricains nouveaux ou peu connus. Physis (Buenos Aires). 2: 365-399.
  • Santschi F. 1923. Solenopsis et autres fourmis néotropicales. Revue Suisse de Zoologie 30: 245-273.
  • Silva F. H. O., J. H. C. Delabie, G. B. dos Santos, E. Meurer, and M. I. Marques. 2013. Mini-Winkler Extractor and Pitfall Trap as Complementary Methods to Sample Formicidae. Neotrop Entomol 42: 351–358.
  • Suguituru S. S., M. Santina de Castro Morini, R. M. Feitosa, and R. Rosa da Silva. 2015. Formigas do Alto Tiete. Canal 6 Editora 458 pages
  • Tillberg, C.V., D.P. McCarthy, A.G. Dolezal and A.V. Suarez. 2006. Measuring the trophic ecology of ants using stable isotopes. Insectes Sociaux 53:65-69
  • Trager J. C. 1991. A revision of the fire ants, Solenopsis geminata group (Hymenoptera: Formicidae: Myrmicinae). Journal of the New York Entomological Society 99: 141-198
  • Ulyssea M. A., C. R. F. Brandao. 2013. Catalogue of Dacetini and Solenopsidini ant type specimens (Hymenoptera, Formicidae, Myrmicinae) deposited in the Museu de Zoologia da Universidade de Sao Paulo, Brazil. Papies Avulsos de Zoologia 53(14): 187-209.
  • Wild, A. L. "A catalogue of the ants of Paraguay (Hymenoptera: Formicidae)." Zootaxa 1622 (2007): 1-55.
  • da Silva Araujo, M., Castro Della Lucia, T.M., DA VEIGA, Clayton E y CARDOSO DO NASCIMENTO, Ivan. 2004. Efeito da queima da palhada de cana-de-açúcar sobre comunidade de formicídeos. Ecol. austral. 14(2): 191-200.