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Phylogenetic and biogeographic analyses can enhance our understanding of

multispecies interactions by placing the origin and evolution of such inter-

actions in a temporal and geographical context. We use a phylogenomic

approach—ultraconserved element sequence capture—to investigate the evol-

utionary history of an iconic multispecies mutualism: Neotropical acacia ants

(Pseudomyrmex ferrugineus group) and their associated Vachellia hostplants.

In this system, the ants receive shelter and food from the host plant, and they

aggressively defend the plant against herbivores and competing plants.

We confirm the existence of two separate lineages of obligate acacia ants that

convergently occupied Vachellia and evolved plant-protecting behaviour,

from timid ancestors inhabiting dead twigs in rainforest. The more diverse of

the two clades is inferred to have arisen in the Late Miocene in northern

Mesoamerica, and subsequently expanded its range throughout much of

Central America. The other lineage is estimated to have originated in southern

Mesoamerica about 3 Myr later, apparently piggy-backing on the pre-existing

mutualism. Initiation of the Pseudomyrmex/Vachellia interaction involved a shift

in the ants from closed to open habitats, into an environment with more intense

plant herbivory. Comparative studies of the two lineages of mutualists should

provide insight into the essential features binding this mutualism.
1. Introduction
An outstanding question in the study of multispecies symbioses concerns the

influence of phylogeny and biogeography on the origin, evolution and functional

dynamics of such interactions. By considering multispecies interactions in a

phylogenetic and geographical context, we gain insight into factors propelling,

impeding or modifying the associations, and the extent to which selective

pressures vary across different landscapes and phylogenetic lineages [1–6]. Phylo-

genies also allow instances of convergent evolution of symbiotic associations to be

more rigorously identified and analysed [6,7].

Recent years have seen a proliferation of studies on ant/plant mutualisms, often

employing phylogenetic approaches to make inferences about the extent of coevolu-

tion between partners, the biogeographic context in which evolution has occurred,

the factors favouring elaboration or dissolution of the mutualism and the effects of

the mutualism on diversification rates [7–15]. When we consider ant/plant mutual-

isms that involve domatia-bearing plants and their specialized, protective ants, two

contrasting aspects are evident: on the one hand, there are unique features associated

with particular taxa and geographical settings [16–18]; on the other hand, we see

replication of pattern and process across different sets of interacting partners

[6,18]. Multiple case studies, employing a phylogenetic/historical framework,

are needed to provide a balanced perspective on these contrasting elements of

contingency and convergence.

Here we examine the evolutionary history of a classic ant/plant mutualism: the

association of Central American ants in the Pseudomyrmex ferrugineus group with

swollen-thorn acacias (Vachellia species). In this system, the ants receive nesting
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space in the form of swollen stipular thorns, and food from extra-

floral nectaries and specialized leaf-tip food bodies (Beltian

bodies). The ants in return protect their host plant from

herbivores and competing plants, by patrolling aggressively,

removing or repelling intruders and clipping competing

vegetation [16,19–23]. The system has also been invaded to a lim-

ited degree by parasitic (non-protective) ants [24,25], although

certain features of the ants and plants appear to constrain this

[23,26–28]. There are aggressive Pseudomyrmex associated with

other domatia-bearing plants, such as Triplaris and Tachigali
[11,13,29], but most species in this genus have very different

habits: they are timid ants, nesting opportunistically in dead,

insect-bored twigs of many species of woody plants [16,30]. Simi-

larly, other species of Vachellia do not display the constellation

of mutualism-associated traits—inhabitable swollen thorns,

food bodies and enlarged extrafloral nectaries—shown by the

Mesoamerican ant-acacias [20].

In this study, we employ a phylogenomic approach, ultra-

conserved element (UCE) sequence capture [31,32] and

comprehensive taxon sampling to address the following ques-

tions: (i) what are the phylogenetic relationships of the obligate

acacia ants? More specifically, do phylogenomic data support

recent inferences [13,23], based on Sanger sequencing, that

the acacia ants evolved more than once? (ii) what is the biogeo-

graphic history of the acacia ants? Where and when did they

originate? By what sequence of events did they come to

occupy much of Mesoamerica? and (iii) what has been the

role of habitat and host plant use during the evolution of

acacia ants? Although our focus is on the ants, we take into

account the available information about the phylogeny and

distribution of the plant partners. Our findings highlight a

strong biogeographic component to the evolution of this

system, and potent forces of convergent evolution in the ants.

These results generate additional questions about the selective

forces driving and restraining this iconic mutualism.
2. Material and methods
(a) Taxon sampling
We sampled all 10 species of obligate acacia ants in the P. ferrugineus
group [33]; two other generalist species recently implicated as

part of the P. ferrugineus group [13]; and five other closely related

species of Pseudomyrmex. Based on current taxonomic knowledge

[13,33–36], this represents a comprehensive sampling of the species

of Pseudomyrmex that are related to the acacia ants. For eight of the

10 species of acacia ants, we sampled multiple populations, drawn

from across the known range of the species [33]. Our taxon set com-

prises 29 samples belonging to 18 species. Details of the species,

sample names and voucher specimens are given in the electronic

supplementary material, table S1 (see also the electronic sup-

plementary material, figure S1). Pseudomyrmex depressus, determined

from previous work [13] to be the most distantly related of the six

outgroup species, was used to root the tree.

(b) DNA extraction, library preparation and target
enrichment

DNA was extracted from single ants, usually workers or worker

pupae, using the DNeasy Blood and Tissue Kit (Qiagen Inc., Valen-

cia, CA, USA), and quantified using a Qubit fluorometer (HS Assay

Kit, Life Technologies Inc., Carlsbad, CA, USA). We sheared

10–138 ng input DNA to a target size of approximately 600 bp by

sonication using a Diagenode BioRuptor (Diagenode Inc., Denville,
NJ, USA), and this product served as input for a modified genomic

DNA library preparation protocol (Kapa Hyper Prep Library Kit,

Kapa Biosystems) that included SPRI bead cleanup using an

AMPure substitute [37] and custom dual-indexing barcodes [38].

For UCE enrichment, we pooled 8–10 libraries together at

equimolar concentrations and adjusted pool concentrations to

147 ng ml21. For each enrichment, we used a total of 500 ng of

DNA (3.4 ml each pool), and we performed enrichments using

a custom RNA bait library developed for ants [39] and syn-

thesized by MYCROARRAY (Ann Arbor, MI, USA). The probe set

includes 9446 probes, targeting 2524 UCE loci. Although these

loci are likely to be present across Hymenoptera, this set is ant-

specific because the probes used were designed from ant gen-

omes (Harpegnathos saltator and Atta cephalotes). For each

enrichment, we hybridized the RNA bait libraries to sequencing

libraries at 658C for 24 h and we followed a standardized, in-

solution enrichment protocol (v. 1.5; protocol available from

http://ultraconserved.org). Following enrichment, we quantified

the DNA concentration of enriched pools using qPCR and we

used these values to make an equimolar pool-of-pools, contain-

ing up to 102 individual samples, which were submitted to the

High Throughput Genomics Core Facility, Huntsman Cancer

Institute, University of Utah, where they were quality checked,

quantified with qPCR and sequenced on an ILLUMINA HISEQ

2500 (125 cycle paired-end sequencing, v. 4 chemistry).

(c) Assembly and alignment
We performed initial bioinformatics steps, including read cleaning,

assembly and alignment, using the software package PHYLUCE

v. 1.5 [40]. Demultiplexed FASTQ output was cleaned and trim-

med using ILLUMIPROCESSOR [41], a wrapper program around

TRIMMOMATIC [42]. Cleaned reads were assembled de novo using

TRINITY (v. trinityrnaseq_r2013-02-25) [43]. After assembly, we

used PHYLUCE to identify UCE loci from the assembled pool of con-

tigs and to remove any potential paralogs. We performed this step

using default settings (80% for min-coverage and min-

identity). We then separated and aligned individual loci using

a wrapper script around the alignment program MAFFT [44].

We performed this step using default PHYLUCE settings, except for

the ‘incomplete-matrix’ and ‘no-trim’ flag, which we used to

allow for missing data and to prevent default alignment trimming.

Each alignment was trimmed using a wrapper around GBLOCKS v.

0.91b [45], run with reduced stringency settings of b1 ¼ 0.5, b2 ¼

0.5, b3 ¼ 12 and b4 ¼ 7. To reduce missing data, we chose a

subset of trimmed UCE alignments in which the loci were rep-

resented in at least 95% of taxa (more than 27 out of 29 taxa).

This subset with 95% taxon completeness had 1672 loci, and

10.8% missing data across all cells in the concatenated matrix.

The complete dataset included 1 321 987 bp of sequence data, of

which 58 173 were informative. Assembly and matrix stats are

provided in the electronic supplementary material, table S2.

(d) Phylogenetic analyses
Most phylogenetic analyses, including divergence dating, were

performed using either the CIPRES Science Gateway [46] or the

Smithsonian Institution’s high-performance computer cluster

(Hydra). For concatenated maximum-likelihood (ML) analysis,

we used RAxML v. 8.2 [47] with the GTRþ G model and we per-

formed best tree plus rapid bootstrap searches using 100 bootstrap

replicates. We ran analyses under three partitioning schemes:

(i) unpartitioned, (ii) the best-fit scheme chosen by PARTITIONFINDER

v. 1.1.1 [48] under the hcluster algorithm [49], with each UCE locus

corresponding to a separate data block, and (iii) the best-fit scheme

chosen by PARTITIONFINDER v. 2.0 [50] under the kmeans algorithm

[51]. To reduce the possible influence of nucleotide frequency

heterogeneity and saturation, we also ran an unpartitioned ML

treatment with RY-coding.
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We used EXABAYES v. 1.4.1 [52] for Bayesian analysis of the

concatenated data matrix, with the GTR þ G model and the

same three partition schemes employed in RAxML. Each

EXABAYES analysis included two independent runs, each having

four coupled chains, and each run was performed for 500 000

generations, sampling every 100 generations. Burnin was set to

25% and Markov chain Monte Carlo (MCMC) convergence was

confirmed with TRACER v. 1.6.0 [53].

For species tree analysis, we employed ASTRAL [54] using

v. 4.8.0, which allows multiple individuals to be assigned to

the same species. We ran one analysis with the 500 best genes

(those with highest average bootstrap scores) and one analysis

with all 1672 loci. We also ran a third analysis with a newer ver-

sion of ASTRAL (v. 4.10.8) which generates branch lengths

in coalescent units but does not allow for species assignment;

this third analysis used the 500 best genes. All analyses were

performed using 100 multi-locus bootstrap replicates [55].

(e) Divergence dating
As input for divergence dating with BEAST v. 1.8.3 [56], we used sev-

eral different constraint topologies: (0) all 29 taxa, kmeans-

partitioned ML topology; (1) 18 taxa, kmeans-partitioned ML top-

ology and (2) 18 taxa, kmeans-partitioned Bayesian (EXABAYES)

topology. Hereafter we refer to these as ‘topology 0’, ‘topology 1’

and ‘topology 2’, respectively. The 18-taxon topologies included

only a single exemplar for each species, and we generated these

trees by pruning taxa from the trees containing all taxa using the R

package APE [57]. We pruned taxa arbitrarily except for the two

‘paraphyletic’ species, P. ferrugineus and Pseudomyrmex mixtecus,

in which we retained the population that was closest to the diver-

gent ingroup species (Pseudomyrmex janzeni and Pseudomyrmex
veneficus, respectively).

Foreach constrained topology, we had twonode age calibrations:

the root node was assigned a normal prior, with mean 20.3+10 Ma,

based on results in Chomicki et al. [13]; and the Dominican amber

fossil Pseudomyrmex baros was used to calibrate stem Pseudomyrmex
haytianus, an internal node to which we assigned the same gamma

prior as Chomicki et al. [13] (offset ¼ 15 Ma; shape a¼ 3; scale b¼

3.8, median¼ 25 Ma). For each analysis, we chose 50 randomly

sampled loci from the complete (1672 locus) dataset (same locus

set used for topology 1 and 2, with alignments pruned to 18 taxa;

different locus set for topology 0); and we performed three indepen-

dent BEAST runs, each for 100 million generations, sampling every

2000 generations, under a GTRþ G substitution model and uncorre-

lated lognormal clock. We also performed one MCMC run in which

only the prior was sampled. For all runs, we used a birth–death

model for the tree prior and we turned off all tree search operators,

thus constraining tree topology to the user-supplied input tree. Con-

vergence and run performance was assessed with TRACER v. 1.6.0 [53]

by examining post-burnin parameter values across all runs.

( f ) Biogeographic analysis
We used the R package BioGeoBEARS [58,59] for ancestral range

estimation of the ants, evaluating six models: dispersal–

extinction–cladogenesis (DEC) [60], DEC þ J, where J is a

parameter allowing for founder event speciation [58], DIVALIKE

[61], DIVALIKE þ J, BAYAREALIKE [62] and BAYAREALIKE þ
J. We recognized five areas, based on the distribution ranges of

the ants [33] and historical biogeographic barriers in the region

[63–65]: (i) Mexico north and west of the Isthmus of Tehuante-

pec, (ii) northern Central America: Isthmus of Tehuantepec to

northern Nicaragua, (iii) southern Central America: central

Nicaragua to eastern Panama, (iv) South America, and (v) the

Caribbean (figure 2). We used the BEAST chronograms from

the two 18-taxon analyses (topology 1 and topology 2), where

each species is represented by a single exemplar. We coded

each species for its entire range, except that two outgroup species
(Pseudomyrmex perboscii, Pseudomyrmex obtusus), which are sub-

tended by long branches and whose main distribution is in

South America, were coded as occurring in area D only.

For all models, we created two time intervals, one from 0 to

5 Ma (approximating the time of close proximity of Central and

South America, culminating in final closure of the Isthmus of

Panama about 3 Ma [65]) and 5–25 Ma (reduced proximity).

For dispersal multipliers, we used a value of 1.0 for all adjacent,

connected areas, 0.5 for southern Central America and South

America prior to 5 Ma, and 0.01 for distant unconnected areas.

We ran two sets of analyses: (i) in analysis 1 we allowed all

area possibilities; (ii) in analysis 2 we excluded range combinations

containing DE, because the outcome of analysis 1 was an ancestral

range of DE at the base of the tree—a result that is implausible and

seemed to be driven by the occurrence among the outgroup species

of a single Caribbean endemic. Use of 0–5 Ma as the period of

close proximity of Central and South America was based on cur-

rent thinking about the formation of the Isthmus of Panama [65],

but we ran additional sensitivity analyses in which we employed

two other sets of time intervals: 0–8 Ma/8–25 Ma and 0–3 Ma/

3–25 Ma. Results (not shown) yielded very similar inferences

about biogeographic history, with the few differences having no

effect on our overall conclusions.

We also estimated ancestral ranges in the domatia-bearing

Vachellia and their relatives, using the same six models in Bio-

GeoBEARS and the same five biogeographic areas, time

intervals (0–5 Ma/5–25 Ma) and dispersal multipliers. Infor-

mation on plant distributions was taken from GBIF [66], and

filtered for dubious records, i.e. those not based on verified speci-

men records. We carried out three sets of analyses: (i) all areas

allowed; (ii) all disjunct continental areas disallowed, but all con-

nected continental areas containing E allowed; and (iii) all areas

that included E disallowed except for widespread ranges:

ABCDE, BCDE, ABCE and CDE. Our input tree was the Vachellia
chronogram generated by Chomicki et al. [13].

(g) Ancestral trait reconstruction
We used an ML approach as implemented in the Ace function of

APE [57] to estimate the history of changes in habitat use among

ant species, comparing equal rates (ER), symmetrical rates (SYM)

and all rates different (ARD) models. Ant taxa were coded accord-

ing to whether they occur predominantly in (0) closed habitats

(rainforest and tropical moist forest) or (1) open habitats (tropical

dry forest, pastures, roadsides). As the input tree we used the

BEAST topology 1 chronogram. We evaluated the best trait

model by performing likelihood ratio tests among competing

models. We used the same approach for estimating ancestral nest-

ing habits in the ants, using the following three discrete states:

(0) nesting in dead twigs of various plants, non-aggressive; (1) nesting

in Vachellia domatia, aggressive, and (2) nesting in live branches of

various trees, non-aggressive. Trait data on the ants were taken

from published sources [13,20,33–36].
3. Results
(a) Phylogenetic relationships
Except for the position of one species, Pseudomyrmex peperi,
the same tree topology was obtained in nearly all analytical

treatments, with maximum support at most nodes (figure 1;

electronic supplementary material, figure S2). The P. ferrugineus
group is shown to be a strongly supported clade (ML

bootstrap percentages 100, Bayesian posterior probabilities

1.00, ASTRAL multi-locus bootstraps 100) that includes the 10

species of obligate acacia ants and also contains two species

of generalist (dead twig-inhabiting) ants, Pseudomyrmex evitus

http://rspb.royalsocietypublishing.org/
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and Pseudomyrmex feralis. This effectively splits the acacia ants

into two different subgroups, here termed the Pseudomyrmex
nigrocinctus subgroup and the P. ferrugineus subgroup,

separated by two maximally supported nodes (figure 1). This

result was also obtained by Chomicki et al. [13] with a

10-gene dataset, although the two critical nodes upholding

this arrangement had less than full support.

The P. nigrocinctus subgroup comprises only two species,

with the remaining eight acacia ants falling in the P. ferrugineus
subgroup. At the base of this subgroup is a poorly resolved

three-way split among P. peperi, and two other lineages, here

referred to as the Pseudomyrmex spinicola complex (two species)

and the P. ferrugineus complex (five species). Most treatments

recover P. peperi as sister to all other members of the P. ferrugineus
subgroup (kmeans-partitioned ML bootstrap 100, RY-coding

ML bootstrap 86, ASTRAL bootstraps 45, 54, 54), but in some

analyses P. peperi is situated one node shallower, as sister to

the P. ferrugineus complex (electronic supplementary material,

table S3). Within the P. ferrugineus complex, there are two sister

groups, with two and three species, respectively, and each

sister group contains an examplewhere one species is embedded

within another, rendering the latter paraphyletic (figure 1a).

The sister group of the P. ferrugineus group is P. perboscii, a

species occurring from Costa Rica to Brazil, which nests in the

live branches of a wide variety of plants including Albizia,

Cordia, Bombax, Pseudobombax and Macrolobium. This species

is neither a dead twig inhabitant nor a specialized ant–
plant mutualist; rather it is a timid, non-specific live-stem

nester, that apparently does not provide protection to the

plants it inhabits [30,34]. Sister to this more inclusive group

of (P. perboscii þ P. ferrugineus group) is a clade comprising

(i) P. haytianus, an isolated species endemic to Hispaniola,

and (ii) the Pseudomyrmex goeldii group, which is centred

in South America (figure 1a). These more distantly related

species are all generalist inhabitants of dead twigs [36].
(b) Divergence dating
Divergence dates from the BEAST analyses are similar across

three alternate topologies (table 1 and figure 2; electronic

supplementary material, figure S3), with slightly older ages

being estimated with topology 0 (29 taxa) than topologies 1

and 2 (18 taxa). We estimate the crown age of the P. ferrugineus
subgroup to be 6.7 Ma (95% highest posterior density (HPD)

9.0–4.8 Ma) with topology 0, 5.7 Ma (95% HPD: 7.9–4.0 Ma)

with topology 1, and 5.7 Ma (95% HPD: 7.8–4.1 Ma) with top-

ology 2. Equivalent estimates for the other clade of obligate

acacia ants, the P. nigrocinctus subgroup, are 2.5 (3.7–1.5) Ma,

2.4 (3.9–1.3) Ma and 2.4 (3.9–1.3) Ma, respectively.

Within the P. ferrugineus subgroup, the P. ferrugineus com-

plex has estimated crown ages of 4.3–4.8 Ma, and for the

P. spinicola complex these estimates are 3.3–4.5 Ma (table 1).

For the two paraphyletic–monophyletic species pairs within

the P. ferrugineus complex, the divergence dates are quite
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analyses (DEC þ J for both ants and plants), with one area constraint for the ants (ant analysis no. 2) and disjunct continental areas disallowed for plants ( plant analysis
no. 2) (see text). The ancestral range(s) of highest probability is depicted for each node. Results are similar using other models and with alternate topologies and area
constraints (see the electronic supplementary material, figures S4 and S5). Photographic images courtesy of Alex Wild (www.alexanderwild.com).

Table 1. Estimated crown ages and 95% highest probability density (HPD) values for selected taxa in the P. ferrugineus group. (Results are taken from BEAST
analyses across three alternate topologies: (0) all 29 taxa, kmeans-partitioned ML topology; (1) 18 taxa, kmeans-partitioned ML topology and (2) 18 taxa,
kmeans-partitioned Bayesian (EXABAYES) topology. Topology 1 was also obtained with ASTRAL species tree analyses (figure 1b).)

clade

topology 0 topology 1 topology 2

age (Ma) 95% HPD age (Ma) 95% HPD age (Ma) 95% HPD

P. ferrugineus group 13.5 17.5 – 10.1 12.0 16.0 – 8.7 12.0 15.9 – 8.8

P. ferrugineus subgroup 6.7 9.0 – 4.8 5.7 7.9 – 4.0 5.7 7.8 – 4.1

P. nigrocinctus subgroup 2.5 3.7 – 1.5 2.4 3.9 – 1.3 2.4 3.9 – 1.3

P. spinicola complex 4.5 6.3 – 3.0 3.3 5.0 – 2.0 3.4 5.1 – 2.0

P. ferrugineus complex 4.8 6.5 – 3.3 4.4 6.1 – 3.0 4.3 6.0 – 3.0
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recent, in the order of 1.5 Ma (figure 2; electronic supplemen-

tary material, figure S3). The P. ferrugineus group as a whole

appears to have a crown age of about 12–14 Ma.
(c) Biogeographic inference and trait evolution
Among the six models evaluated with BioGeoBEARS, DEC þ J

consistently received the highest likelihood, and provided a sig-

nificantly better fit than its null model, DEC, across two

alternate ant topologies and analyses (electronic supplementary

material, table S4). The addition of a jump dispersal parameter

always improved the models DIVALIKE and BAYAREALIKE

too. Here we focus on the ancestral range estimates obtained

with topology 1/analysis 2 and the DEC þ J model
(figure 2a), but other analytical treatments yielded broadly

similar results (electronic supplementary material, figure S4).

In combination with BEAST divergence time estimates, our

biogeographic analyses generate a number of well-supported

inferences about the evolution of the P. ferrugineus group

(figure 2a). This clade appears to have originated after dispersal

of an ancestral species from South America to Mesoamerica

between 12 Ma and 19 Ma, well before formation of the

Isthmus of Panama [65]. This was presumably a generalist

species, nesting in dead twigs and inhabiting wet tropical

forest, as exemplified by the two extant species P. evitus and

P. feralis. This supposition is supported by ancestral state recon-

struction of habitat use and nest sites, which shows that use of

open habitats and Vachellia domatia is derived (figure 3). We

http://www.alexanderwild.com
http://rspb.royalsocietypublishing.org/
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also uphold previous inferences [13,23] that inhabitation of

domatia arose twice in this group of ants.

We estimate a crown-group origin of the P. ferrugineus sub-

group—the principal clade of obligate acacia ants—at about

6 Ma, most likely in northern Mesoamerica, and coincident

with a shift to more open habitats (figures 2a and 3). This corre-

sponds approximately to the estimated time and place of origin

of domatia-bearing Vachellia (figure 2b). This was followed by

dispersal and diversification of the ants and plants throughout

Central America and Mexico. About 2.5 Ma the most recent

common ancestor of the P. nigrocinctus subgroup appeared,

most likely in southern Mesoamerica, apparently becoming a

mutualist by exploiting an already existing association. The

species that facilitated this was likely P. spinicola, a member

of the P. ferrugineus subgroup, and by then a widespread

mutualist species in southern Mesoamerica (figure 2a).

Within the P. ferrugineus complex, the two examples of

species paraphyly can be explained by the times of origin

and geographical distributions of the taxa. Both cases involve

‘daughter’ species (P. janzeni, P. veneficus) isolated in western
Mexico, with the paraphyletic ‘parent’ species (P. ferrugineus,
P. mixtecus) being more widespread in southern Mexico and

northern Central America (range details in [33]). These are esti-

mated to be recent divergences (approx. 1.5 Ma) for which

there has presumably been insufficient time for complete

lineage sorting in the parent species.
4. Discussion
Our findings confirm earlier reports [13,23] that the mutualistic

acacia ants belong to two separate lineages, the P. ferrugineus
subgroup and the P. nigrocinctus subgroup (figures 1 and 2).

The initial association between ants and plants probably

involved the P. ferrugineus subgroup, now comprised of eight

species, which is inferred to have arisen in northern Mesoamer-

ica at the end of the Miocene, in conjunction with a shift from

closed to open habitats (figures 2 and 3). Such a shift in habitat

use would have placed the ants in an environment where

browsing mammals were a significant selective force on

http://rspb.royalsocietypublishing.org/
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plants [20,67], arguably to a greater degree than in the ancestral

closed forest habitat of these ants. The Late Miocene also corre-

sponds to a time when drier habitats supporting more open

vegetation became more widespread in the region [63,64].

The estimated crown age of the P. ferrugineus subgroup

approximately matches that of the domatia-bearing Vachellia,

as also observed by Chomicki et al. [13]. The P. nigrocinctus sub-

group, by contrast, has an estimated crown age of only 2.5 Ma,

is largely restricted to southern Mesoamerica, and has only two

species. Of course, we cannot be certain when the mutualism

with Vachellia arose in each lineage—the estimated stem age

of the P. nigrocinctus subgroup is actually older than that of

the P. ferrugineus subgroup—but the above lines of evidence

from biogeography and observed species richness point to

the P. ferrugineus subgroup as the initiating partner. This was

also supported by stochastic character mapping of nesting

traits across a comprehensive phylogeny of the entire genus

Pseudomyrmex, in which domatia inhabitation was inferred to

have arisen later on the branch subtending the P. nigrocinctus
subgroup than on the stem of the P. ferrugineus subgroup [13].

An origin of the mutualism in northern Mesoamerica is

also consistent with what is known about the phylogeny and dis-

tribution of Vachellia [13,68]. Based on current understanding,

Vachellia chiapensis is sister to all other domatia-bearing congeners

and is confined to northern Mesoamerica, as is the next-

branching species, Vachellia mayana. Only in shallower parts of

the tree do we find species that occur in southern Mesoamerica,

and most of these are also found in northern regions. As expected,

ancestral range inference with BioGeoBEARS supports northern

Mesoamerica as the origin for domatia-bearing Vachellia, both

with the DECþ J model (analysis 2) (figure 2b) and under alter-

nate models (electronic supplementary material, figure S5 and

table S5). It is worth emphasizing, however, that there is little

evidence for strict co-cladogenesis between Vachellia and

Pseudomyrmex [13,33]. There has been extensive host-plant

switching and expansion by the ants, to the point where most

acacia ants now occupy any species of domatia-bearing Vachellia
occurring within their distribution range.

There is strong convergence between the P. ferrugineus sub-

group and the P. nigrocinctus subgroup in several ‘classic’ traits

associated with the ant/acacia mutualism [20]: (i) the association

is obligate, i.e. the acacia ants nest only in Vachellia domatia;

(ii) the workers are aggressive and sting much more readily

than generalist twig-inhabiting species of Pseudomyrmex;

(iii) the workers patrol the plants constantly; (iv) the ant colonies

subsist on harvested Beltian bodies and extrafloral nectar, i.e. the

workers are not generalist scavengers like most species of

Pseudomyrmex; and (v) the workers have smaller eyes and more

slender profemora than related non-mutualistic species [33,36].

This convergence is all the more striking because none

of these traits are exhibited by the two generalist species,

P. evitus and P. feralis, which are interpolated phylogenetically

between the two acacia ant lineages. These generalists are

timid, large-eyed, diurnal species that nest opportunistically

in dead twigs and have no association with domatia-bearing

Vachellia [36]. Although worker and queen morphology is

different from that of the acacia ants, the male genitalia suggest

an affinity to other members of the P. ferrugineus group [33,36],

and this relationship is confirmed by the sequence data.

Despite these remarkable convergences there are some

differences between the two groups of acacia ants. Workers of

P. nigrocinctus and Pseudomyrmex particeps are smaller in size

and more slender in body form than most species in the
P. ferrugineus subgroup [33], and there are hints of differences

in behaviour. The gaster is held straight by workers in the

P. nigrocinctus subgroup, for example, whereas it is often

curled forward by workers in the P. ferrugineus subgroup [69]

(figure 1a), although the significance of this behaviour is unclear.

At least three species in the P. ferrugineus subgroup possess

derived physiological traits (reduced invertase and protease

activity in adult workers) that adapt them to the nutritional

rewards of their Vachellia hosts, an arrangement that evidently

buffers the mutualism against cheaters [23,26,28,70]. We do

not know the extent to which these traits are manifested in the

P. nigrocinctus subgroup. Thus there is considerable scope for

probing in greater detail the similarities and differences between

these two groups of ant–plant specialists, and this could pro-

vide insight into the most essential elements of the symbiosis.

A recent analysis of genome evolution in mutualist and non-

mutualist species of Pseudomyrmex demonstrated convergent

increases in rates of gene evolution in the mutualists [15]. This

included a comparison between a species in the P. ferrugineus
subgroup, Pseudomyrmex flavicornis, and the non-mutualist

species, P. feralis (formerly called P. psw054). In our trees, we

also find that P. feralis manifests consistently shorter branch

lengths than its sister group, the P. ferrugineus subgroup

(figure 1; electronic supplementary material, figure S2), but

this appears not to be the case when the comparison is extended

to the other closely related non-mutualist, P. evitus. Both species,

P. feralis and P. evitus, deserve greater scrutiny: although they are

timid species nesting in dead twigs, we know little else about

their biology and they are infrequently encountered, suggesting

that they may have other unusual or specialized characteristics.

Finally, the identification of P. perboscii, a generalized live-

stem nesting ant, as the sister group of the P. ferrugineus
group highlights the possible significance of this habit as a

precursor to the development of more specialized ant/plant

relationships [30]. It suggests the possibility that acacia ants

evolved in a clade with a predisposition towards nesting in

live plant cavities. This hypothesis could be explored by gen-

etic comparisons of this larger clade (P. ferrugineus group þ
P. perboscii) with other related Pseudomyrmex clades that are

strictly dead twig inhabitants, such as the P. goeldii group.
5. Conclusion
We investigate the evolutionary history behind the iconic

ant/plant mutualism involving the P. ferrugineus group and

swollen-thorn acacias in the genus Vachellia. Our results

indicate that the mutualism is relatively young, having devel-

oped in the Late Miocene in northern Mesoamerica in a clade

of ants, the P. ferrugineus subgroup, that shifted from closed

to open environments, and from timid to aggressive behaviour.

Sometime after this—approximately 3 Myr later—a second

clade of ants, the P. nigrocinctus subgroup, independently

evolved a mutualistic relationship with domatia-bearing Vachel-
lia, apparently taking advantage of an already existing

association. The arena for this second event was most likely

southern Mesoamerica, to which members of the now-diversi-

fying P. ferrugineus subgroup had dispersed. Convergence

among these two groups of ants can be contrasted with what

appears to be a single origin of domatia in the plants [13].

Despite being separated phylogenetically by non-mutualistic

(dead twig-inhabiting) species the two clades of ant mutualists

are nevertheless relatively closely related, sharing a common

http://rspb.royalsocietypublishing.org/
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ancestor about 13 Ma, in contrast with several more distantly

related congeners that have become obligate non-protective

parasites of Vachellia, each independently of the other [13,33].

This suggests that there might be features of the P. ferrugineus
group as a whole that favoured the development of mutualistic

interactions. Additional comparisons at multiple phylogenetic

depths can help to illuminate the historical context of these

interactions, and the factors predisposing the development

of either mutualistic or antagonistic relationships with the

plants. The Pseudomyrmex/Vachellia system and other ant/

plant mutualisms [7–18] add to a growing body of evidence

for convergent evolution of complex multispecies interactions

[6], tempered by particular ecological, phylogenetic and

geographical conditions.
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