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Abstract The harvester ant Messor barbarus can be

responsible for substantial losses of weed seeds in arable

fields in NE Spain. The spatial distribution of nests can have

consequences for biological weed control, because foraging

intensities decline with distance from the nest. The proba-

bility that seeds will escape harvesting will be lower if nests

occur regularly distributed. We here investigated ‘large’-

scale variability (up to 150 m), caused by habitat hetero-

geneity, and ‘small’-scale spatial variability (up to 12 m),

caused by interactions between colonies, in nest distribution

in a 50 9 150 m area in a cereal field in NE Spain, in 2009

and 2010. Large-scale variability was present in the data,

but could not be explained by elevation, distance to the

nearest field edge, or interpreted as simple trends across the

area. Small-scale interactions could successfully be descri-

bed by a multi-type/hard core Strauss process model,

indicating territoriality among nests. Exclusion and inter-

action zones were identified, with radii that were smaller for

small than for large colonies, and smaller for 2009 than for

2010. There was close resemblance between the observed

and fitted spatial structure up to a radius of 3–4 m. Large-

scale spatial variability, but not small-scale interactions,

may be responsible for the existence of areas with few or no

nests, where weed seeds have a higher probability of

escaping the ants and entering the seed bank. Identifying

and understanding the factors that influence the large-scale

trends is, therefore, essential for optimizing weed control.
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Introduction

The harvester ant Messor barbarus (L.) is a common gra-

nivore in NE Spain. Inside rain-fed arable fields, it is by far

the most abundant granivore and responsible for formidable

losses of weed seeds. Depending on the weed species,

46–100 % of the newly produced weed seeds can be taken

by the harvester ants (Westerman et al., 2012), thus con-

tributing to weed control. Seed predation risk can vary

considerably among and within fields (Baraibar et al., 2009,

2011). Differences in the spatial distribution of nests could

be one of the factors responsible for the observed variability

(Dı́az, 1992; Azcárate and Peco, 2003; Baraibar et al.,

2011). The probability that an arbitrary seed will escape

being detected will be lower for a field in which nests are

regularly distributed (underdispersed) than in a field in

which nests occur in clumps (overdispersed). In the latter

case, some areas may be searched more intensely than

others, as foraging intensity declines exponentially with

distance from the nest (Mull and Macmahon, 1997; Azcá-

rate and Peco, 2003).
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Ant colonies are territorial. For some species, it is known

that they engage in nest-area marking by placing phero-

mones in the vicinity of a nest entrance to repulse alien

workers (Grasso et al., 2005). Close to the nest, some spe-

cies of ants are particularly aggressive to conspecifics from

other colonies; aggression decreases with increasing dis-

tance from the nest entrance (Knaden and Wehner, 2003).

Various factors, both biotic and abiotic, can influence nest

distribution.

Differently aged colonies may display different spatial

distribution patterns (Korb and Linsenmair, 2001). Once

a year, mature colonies produce winged, reproductive

males and females that are released after the first autumn

rains. The locations where mated queens land are either

randomly distributed or clumped (Ryti and Case, 1988;

Grohmann et al., 2010), but the probability of successful

nest initiation is strongly influenced by the proximity to

long-established colonies (Ryti and Case, 1988; Groh-

mann et al., 2010). Workers of larger colonies harass and

kill invading founding queens and destroy smaller,

younger colonies (Baroni Urbani, 1968), while workers

of younger colonies tend to be more tolerant (Grohmann

et al., 2010). Estimates of the mortality rate of founding

queens and first year colonies vary between 90 % (Ryti

and Case, 1988) and [99 % (Gordon and Kulig, 1996).

Survival probabilities of colonies remain low until they

are about 2 years old (Johnson, 2001). Those colonies

that have managed to survive the selective sieve of

competition are expected to be spaced more regularly

than young colonies.

A simulation study predicted more regular nest spacing

with increasing nest density (Ryti and Case, 1988). At

densities well below the carrying capacity, the distribution

of young colonies in the non-occupied space will reflect the

distribution of original landing sites of the foundresses. At

densities close to the carrying capacity, the distribution of

young nests will be shaped by competition with older nests.

Variable resource density between years, and thus a variable

carrying capacity, is expected to induce variability in

establishment opportunities and intensity of intraspecific

competition. Interestingly, these simulations showed that

competition between older, established colonies was less

likely to result in a regular distribution of nests (Ryti and

Case, 1988).

For most ant species, for which the spatial distribution

of nests was investigated, the distribution depended on

the scale of observation. It is frequently regular or ran-

dom at a fine spatial scale, but clumped at larger spatial

scales (Schooley and Wiens, 2003; Folgarait et al.,

2007). This phenomenon can partly be explained by

large-scale biotic and abiotic factors that influence the

survival chances of founding queens and young colonies.

These include soil properties (Enzmann and Nonacs,

2010), topography (Kilpeläinen et al., 2008), amount and

type of vegetation (Dı́az, 1991), land use, level of dis-

turbance, and field management (Dı́az, 1991; Serrano

et al., 1993; Folgarait et al., 2007; Baraibar et al., 2009).

For example, soil strength, texture and moisture content

of the top soil determine the ease with which ants can

tunnel the soil and construct chambers (Boulton et al.,

2005; Enzmann and Nonacs, 2010). Altitude, slope and

orientation influence the number of hours that the ant

nest is exposed to sunshine, which, in turn, influences

ant activity and brood development (Crist and Williams,

1999; Wang et al., 2001; Azcárate et al., 2007).

Summarizing 160 studies involving 136 ant species,

Levings and Traniello (1981) concluded that in the majority

of the cases, nests were either regularly distributed (58), or

randomly tending towards regularity (76). However, nests

were also found to be randomly distributed (12 cases),

randomly tending to clumped (4 cases), clumped (2 cases),

or distributed as were the host plants (8 cases).

We were interested in the spatial distribution of nests

of M. barbarus within arable fields, because of its

potential consequences for biological weed control. The

main purpose of this study was to provide a description

of the spatial patterns of harvester ant nests. We quan-

tified ‘large’-scale variability (up to 150 m), caused by

habitat heterogeneity, and ‘small’-scale spatial variability

(up to 12 m) in nest distribution, caused by interactions

between colonies. We explored nest density and nest size

as possible explanatory variables for small-scale spatial

variability. Gibbs models with large-scale spatial trends

were tested and evaluated, and the L-function was used

to quantify the spatial structure of uni- and bivariate

spatial patterns.

Materials and methods

Location

The spatial distribution of M. barbarus nests was deter-

mined in a no-till cereal field in Villanova de Bellpuig

(41�35025.7600N, 0�58036.2800E) in NE Spain, shortly after

crop harvest in July and August 2009 and 2010. For

information on crop and soil management, we refer to

the description of field 1B in Baraibar et al. (2009). In

2009, a 150 9 50 m area, at least 20 m from any field

margin, was staked out, and its corners and perimeter

were georeferenced, using a GPS with sub-metric pre-

cision (Trimble� GeoXHTM hand-held, GeoExplorer�,

2005). The area was retraced and reused in 2010. The

area was subdivided into three 50 9 50 m blocks, and

marked with sticks every 10 m for visual orientation and

facilitation of nest counting.
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Nest counts

Ant nests were identified by their conspicuous entrances.

Because nests can have multiple entrances, the behaviour of

the ants from nearby entrances was observed. When ants

displayed aggression, avoidance or formed non-overlapping

trails these were interpreted as signs that they belonged to

different colonies. Only nests with visual ant activity were

included in this study to avoid the inclusion of abandoned

nests. Nests were labelled with coloured stakes to prevent

double counting. Nests were counted and georeferenced (x,

y coordinate, elevation) on 14 July, 22 July and 4 August in

2009, and on 10 August, 16 August, and 17 August in 2010,

between 7 (sunrise) and 12 a.m., after which temperatures

became prohibitive for ant activity (Azcárate et al., 2007).

The shortest distance to the field edge was derived by GIS

routines from a digital ortho-photomap at a scale of 1:5,000.

The size of the nests was scored visually on a subjective scale

from size 1 (smallest) to size 5 (largest). The scale was based

on a combination of surface area occupied by the colony,

number of entrances into the colony, and ant size and

behaviour (Baraibar et al., 2011). A class 1 nest occupies ca.

0.40 m2, has a single entrance, and no soldiers; class 2 nest,

ca. 1 m2, 1–2 entrances and no soldiers; class 3 nest, ca.

2 m2, 2–3 entrances and soldiers; class 4 nest, 2–4 m2, 3–4

entrances and soldiers; class 5 nests,[4 m2, C5 entrances,

soldiers and forms long, permanent columns. Only 32 nests

fell into size class 4 and four into size class 5, which was

considered insufficient to be analysed statistically. There-

fore, nests were regrouped into category S1 (size classes 1

and 2) and class S2 (size classes 3, 4 and 5), which conve-

niently coincided with the distinction between those colonies

that had a single nest entrance (S1) and those that had mul-

tiple entrances and soldiers (S2). It was implicitly assumed

that nest size was related to colony age. But even if nest size

was not directly related to colony age, no harm is done; size

may be more important than age with respect to resource use

and spatial distribution of nests (Kirkpatrick, 1984; Sauer

and Slade, 1987), so results can be interpreted in terms of

colony size (Gordon and Kulig, 1996).

Spatial point pattern analysis

The spatial distribution of M. barbarus nests can involve

large-scale trends and small-scale variability. Large-scale

trends are caused by habitat heterogeneity and small-scale

variability by interactions between colonies. If large-scale

trends are absent, a homogeneous Poisson process is the

appropriate null model and the intensity function, k, the

expected number of nests per unit area, is constant. If large-

scale trends are present, a heterogeneous Poisson process

serves as a better null model, and k is variable across space.

After the trend is partialled out, the remaining deviations

from randomness are analysed to identify small-scale

interactions between colonies. Interactions can involve a

zone in which the probability of establishment of other

colonies is increased (aggregated, clustered, overdispersed)

or decreased (regular, underdispersed) and/or a zone from

which other colonies are totally excluded.

Initially, the intensity function was related to elevation,

distance to the nearest edge, and coordinates, covariates that

may describe large-scale trends. However, since all attempts

to establish such a relationship failed (data not shown), a

non-parametric intensity function was adopted instead

(Wiegand and Moloney, 2004), and no further mention was

made of the covariates. The degree of smoothing involved in

density estimation is a controversial issue (Wiegand and

Moloney, 2004). Here, we opted for an intermediate degree

of smoothing, namely a non-parametric estimate based on

the Gaussian kernel with a bandwidth, h, of 10 m (Lan et al.,

2012), which should preserve enough detail of the original

data without being influenced by the distribution of indi-

vidual nests.

The fit of several Gibbs models (Baddeley and Turner,

2006) was assessed, for each dataset (S11, S22, S12 and S21)

and each year (2009 and 2010), separately. Here, the variable

Sij refers to the interaction caused by colonies of size j around

a colony of size i. Interactions occurring between nests of the

same category caused univariate patterns, denoted as S11 and

S22, while interactions between nests belonging to two dif-

ferent nest size categories caused bivariate patterns, denoted

as S12 and S21. Within the class of heterogeneous Poisson

process models, the basic heterogeneous Poisson model, the

global Strauss model (GS), the multi-type Strauss (MS) and

the multi-type/hard core Strauss models (MHS) were tested.

The models differed in the way that they take nest size and

type of interaction into account. The global Strauss model

captures inter-nest repulsive interactions, but does not dis-

tinguish between categorical variables, such as nest size. It

yields an interaction radius (ir), within which the probability

of finding further nests is reduced, and an interaction

strength, c, for the pooled nest categories. An interaction

parameter of zero indicates complete repulsion within the

interaction radius; increasing values of c indicate increas-

ingly weaker interactions. The multi-type Strauss model

allows for interaction radii and strengths of interactions for

each nest category separately. The multi-type/hard core

Strauss model distinguishes between a hard core radius (hr),

a total exclusion zone around a nest, and an interaction zone

(ir). The significance of each of the models was tested by

means of 249 Monte Carlo simulations of the null model and

refitting the null and the alternative models. Including the

original fit, this yielded n = 250, which has a power effi-

ciency of 0.4 %. Model fit was expressed as log-pseudo-

likelihoods [log (pLik)]. The test statistic used was twice the

log-pseudo-likelihood difference between the null and the
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alternative models, analogous to the deviance, following

Baddeley and Turner (2006). The heterogeneous Poisson

model served as the null model. Profiled pseudo-likelihood

was used to estimate ir, while hr was set to its maximum

likelihood value (Baddeley and Turner, 2006).

A border correction of 5 m was applied to all estimation

and model testing for practical reasons. This avoids com-

puting the estimators of spatial structure with nests having

fewer neighbours than expected, simply because they are

close to the plot edges. The border correction width was set

to a value larger than the estimated interaction radii of all

models to be fitted (Baddeley and Turner, 2006).

For the best fitting model, the L-function was used as a

summary statistic to quantify small-scale spatial structure,

for each dataset (S11, S22, S12 and S21). The L-function is a

transformation of Ripley’s K-function with L rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K rð Þ=p
p

. For the univariate pattern S11, Rip-

ley’s K(r) = k-1S11, with K(r) the number of extra nests of

category S1 within distance r of a randomly chosen nest of

category S1, and k the intensity function (Ripley, 1977). In

the case of a homogeneous Poisson process, the expected

value of L(r) equals the radius r, and therefore L(r)–r has an

expected value of zero. In the case of a heterogeneous

Poisson process, L(r)–r is not zero, because of the presence of

a large-scale trend, but the expected value and confidence

interval can be calculated using Monte Carlo simulations. If

the observed function lies outside the specified envelope, the

tested model is rejected. Here, the expected values and the

95 % simultaneous critical envelopes were calculated using

249 simulations each.

All analyses were performed in R (version 2.12.1; R

Development Core Team, 2010), using the package spatstat

(Baddeley and Turner, 2006).

Results

Nest counts

In both years, nest densities were about ‘normal’ for the area

(x = 468 nests ha-1; Baraibar et al., 2011). Overall, nest

densities decreased from 2009 to 2010. In 2009, nest counts

differed significant between blocks (Fisher’s exact test,

p = 0.012); block 2 harboured the lowest number of nests

(71) and block 3 the highest (225) (Table 1). In 2010, blocks

harboured similar total numbers of nests. From 2009 to

2010, the number of nests remained more or less stable in

block 1, increased in block 2 and decreased in block 3.

In both years, there were more nests of category S1 than

S2 in all blocks (Table 1). There were on average (±SE)

445 ± 147.2 nests/ha of category S1, and 105 ± 35.8 nests/

ha of category S2 in 2009, and 347 ± 17.5 nests/ha of cat-

egory S1, and 80 ± 12.9 nests/ha of category S2 in 2010.

This means that on average, 21.4 ± 6.98 m2 was available

per colony in 2009 and 24.0 ± 0.32 m2 in 2010. The dif-

ference in nest density between the two years could mainly

be attributed to a 49 and 66 % reduction in block 3 in the

number of small and large nests, respectively (Table 1). In

the other two blocks, the number of large nests increased,

while the number of small nests either decreased slightly

(20 %; block 1) or increased (61 %; block 2).

The location of nests varied considerably between the

2 years, indicating strong temporal dynamics (Fig. 1). For

example, in 2009, two concentrations of small nests covered

the left side of the test area and another concentration was

found in the top right corner (Fig. 1). In 2010, one of the

concentrations on the right side had largely vanished and a

new concentration of nests had appeared at the bottom

middle of the area (Fig. 1). The location of large nests was

equally dynamic.

Small-scale interactions

The fit of different classes of Gibbs models of inter-point

interactions is summarized in Table 2. The log (pLik) was

substantially enhanced in the models that assumed a heter-

ogeneous Poisson process compared to the model that

assumed a homogeneous Poisson process, and, therefore,

large-scale spatial trends in nest density were present. When

moving from simple to more complex models within the

heterogeneous Poisson process models, increments in log

(pLik) were relatively small. Nevertheless, in 2009, the fits

of the GS model [Dlog (pLik) = 13], MS model [Dlog

(pLik) = 17] and MHS model [Dlog (pLik) = 31] were

better than that of the heterogeneous Poisson process and

significant in all cases (p B 0.004). Similarly, in 2010, the

fits of the GS model [Dlog (pLik) = 17], MS model [Dlog

(pLik) = 21], and MHS model [Dlog (pLik) = 26] were

better than that of the heterogeneous Poisson process and

significant in all cases (p B 0.004).

For the MHS model, the hard core radius, i.e. the zone

from which other colonies were totally excluded, ranged

from 0.22 m (S11) to 1.38 m (S22) in 2009, and from 0.37 m

(S11) to 1.53 m (S22) in 2010 (Table 3). In 2009, colonies

Table 1 Number of Messor barbarus nests of size categories S1 and

S2 in 2009 and 2010 in three 50 9 50 m blocks in a cereal field in NE

Spain

Nest size 2009 2010

S1 S2 S1 S2

Block

1 97 20 78 26

2 56 15 90 19

3 181 44 92 15
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influenced each other up to distances ranging from 0.85 m

(S11) to 2.02 m (S22). Here, repulsion was moderately strong

to weak (0.43 � ĉ� 2.13). In 2010, colonies interacted up

to distances ranging from 1.12 m (S11) to 2.81 m (S22), and

the interaction strength was stronger than in 2009

(0.29 � ĉ� 1.40). The estimates for c22 in 2009 and c12 in

2010 were higher than their theoretical upper bound, indi-

cating that here the models were ill defined. Apparently,

there was some aggregation at short distances of S2 around

S2 in 2009 and S2 around S1 in 2010 that the trend was not

able to account for.

Summary statistic for small-scale interactions

In the case of the homogeneous Poisson model, the observed

L-functions for S11 in 2009 and for S11 and S12 in 2010 lay

partially outside the 95 % simultaneous critical envelopes,

indicating that this model had to be rejected (data not

shown). In addition, the functions for S12 in 2009 and S22 in

2010 were close to the confidence limits (data not shown).

Visual inspection of the L-functions for the MHS model

(Fig. 2) indicated that explained short-range interactions

fitted significantly better than did homogeneous Poisson or

simpler heterogeneous models. Nowhere did the observed

function, associated with the MHS model, cross the 95 %

simultaneous critical envelopes. Up to a distance of 3–4 m,

the observed functions (black lines) followed the expected

functions (red lines) almost exactly, except in the case of S11

in 2010. This indicates that the short-range spatial structure

was dominated by interactions between nests.

However, between 3–4 m and 12 m, the two functions

diverged considerably. There are two possible explanations

for this divergence. First, the non-parametric kernel did not

adequately describe the large-scale trend and some other

variable(s), not included in this study, was (were) respon-

sible for the large-scale trends. Second, nests occurred

indeed under- or overdispersed, with univariate interactions,

i.e. S1 nests around other S1 nests (S11) and S2 nests around

other S2 nests (S22) being regularly distributed (observed

below expected function), and bivariate interactions (S12
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Fig. 1 Location of S1 (top) and S2 nests (bottom) of the harvester ants

Messor barbarus in a 50 m by 150 m area in an arable field in NE

Spain in 2009 (left) and 2010 (right). The grey shading represents nest

densities (m-2 = 10-4 ha-1) based on the kernel density estimate of

the trend used in the inhomogeneous Poisson model

Table 2 Model fit for different Gibbs point process models, expressed

as log-pseudo-likelihoods [log (pLik)], for data gathered in 2009 and

2010

Spatial model 2009 2010

Homogeneous Poisson -1,783 -1,482

Heterogeneous Poisson -1,244 -1,017

Global Strauss -1,231 -1,000

Multi-type Strauss -1,227 -995

Multi-type/hard core Strauss -1,213 -991

Table 3 Estimated interaction radii, ir, interaction parameters, ĉ, and

hard core radii, hr, for interactions S11, S12, S22 and S21 based on the

multi-type/hard core Strauss model

Interaction 2009 2010

hr (m) ir (m) c hr (m) ir (m) c

S11 0.22 0.85 0.45 0.37 1.12 0.29

S12 = S21 0.54 1.63 0.43 0.93 1.38 1.40a

S22 1.38 2.02 2.13a 1.53 2.81 0.76

a Estimate higher than its theoretical upper bound
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and S21) either overdispersed (expected below observed) or

variable with increasing radii.

Discussion

At a fine spatial scale (B4 m), M. barbarus nests were

regularly distributed. We found evidence of exclusion

zones, hr, the zone around a nest entrance from which other

colonies were completely excluded, and interaction zones,

ir, the zone within which the probability of finding further

nests is reduced, indicating territoriality.

Territoriality differed between nest size categories.

When measured by the radii of hr and ir, territoriality was

stronger for large than for small nests. For example, the radii

of hr were considerably larger for S22 (1.4–1.5 m) than for

S11 (0.2–0.4 m). The exclusion zone could represent the

surface area underneath which the actual, physical nest is

located. The radii of the ir were also larger for S22

(1.5–2.8 m) than S11 (0.9–1.2 m). Interestingly, the radii of

both hr and ir for dealings between small and large colonies

(S12 and S21) were intermediate between those for S11 or S22,

suggesting that large colonies were less territorial towards

small colonies. When measured by the interaction strength

within the interaction zone, c, territoriality tended to be

stronger for small than for large colonies. The interaction

strength gives an indication of how strongly the territory is

being defended by the resident nest. Consequently, although

the size of the territory was smaller for small than for large

colonies, smaller territories seem to be defended more

fiercely than large territories.

Territoriality also differed between years. For both S11

and S22, the radii of hr and ir were larger in 2010 than 2009.

Furthermore, the value of the interaction strength, c, indi-

cated that repulsion in the interaction zone tended to be

stronger in 2010 than in 2009. This combination, larger radii

and stronger repulsion, would be consistent with a situation

in which resource availability was lower in 2010 than in

2009, forcing colonies to extend their territories and to

defend these territories more strongly to meet their dietary

needs. This situation could have arisen from increasing ant

population density or from decreasing seed availability

between 2009 and 2010. We do not have information on

weed seed production, so cannot rule out the possibility that

the resource availability differed between years. However,

we do have (weak) indications that suggest that the ant

population density may have been above its carrying

capacity. Usually, nest densities in the area reach a peak

about 11–12 years after the conversion from conventional

to no-till soil management (Baraibar et al., 2011). After that,

nest densities tend to decrease again, presumably because

the ant density is above its carrying capacity, which is

corrected through competition. In 2009, this particular field

had not been tilled for 16 years, and it is possible that the ant

population was in the process of eliminating surplus colo-

nies. This would explain why the nest density was, on

average, lower in 2010 than in 2009. This apparent con-

tradiction, higher ant densities corresponding with lower
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Fig. 2 Estimated L(r)–r as a function of r for each pair of nest

categories, S11, S12, S22 and S21, in 2009 (a) and 2010 (b), based on the

multi-type/hard core Strauss model. The dashed line represents the

expected value of the L-function under the heterogeneous Poisson

process, while the grey band represents the simultaneous 95 % critical

envelopes
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nest densities, originates from the fact that the number of

ants per nest can increase. The above explanation could be

verified in future research by focussing on ant densities,

rather than nest densities. Furthermore, differences in the

dynamics of nest densities between blocks suggest that ant

population density and/or resource availability can vary

considerably at a fine spatial scale.

Assuming that nest size was indicative of colony age, we

found no evidence for the prediction that older colonies

would be more regularly dispersed than younger colonies, at

least not at a small scale. A difference in the radii of hr and ir

between small and large nests is in itself no evidence that

one or the other is more regularly dispersed; it simply tells

how densely ant colonies can be packed spatially. Both

categories of nests were regularly distributed, but the

number of small nests per surface area could be higher than

that of large nests. Furthermore, the weaker repulsion

between large nests (higher c for S22 than for S11) indicates

that the small-scale distribution of large nests could be less

regular than that of small nests. In addition, it was predicted

that the distribution of nests would be more regular at high

than at low nest densities. Messor barbarus nest density was

22.5 % lower in 2010 than in 2009, and we, therefore,

expected a more regular distribution of nests in 2009. Again,

we found no evidence for this prediction, at a small spatial

scale. In fact, interactions were almost always stronger

(lower c) in 2010 than in 2009, which is at odds with the

initial prediction.

Large spatial trends ([12 m), not linearly related to x- or

y-coordinates, were present in the distribution of M. bar-

barus nest across the 50 9 150 m area in both years.

However, we were unsuccessful at relating large spatial

trends to the chosen abiotic factors; distance to the field

edge, altitude or field coordinates (see Materials and

Methods). The choice of these factors was prompted mainly

by practical reasons, e.g. easily measurable; nevertheless,

the choice of factors was not farfetched, because all three

factors separately had been successfully related to the dis-

tribution of harvester ants in other studies. The fact that the

large-scale distribution in our data was so variable between

the 2 years (Fig. 1) was unexpected, because it is known

that ant colonies can persist at least 12 years, the average

age of queens (X. Espadaler, pers. comm.). Furthermore,

relocation of nests is rare in this species (P.R. Westerman,

pers. obs.), similar to that in other species (Gordon, 1992),

suggesting that the dynamics between the 2 years was lar-

gely caused by mortality of existing colonies and

establishment of new colonies. This again suggests that the

origin of the spatial trend should not be sought in static

factors, i.e. most abiotic factors, such as altitude or soil type.

Instead the origin of the spatial trend should be sought in

some dynamic factor(s), i.e. most biotic factors. Examples

of such dynamic, biotic factors are seed availability,

microclimate, soil surface conditions, strength of intraspe-

cific competition or the distribution of landing sites of

foundresses. Finding and understanding the origin of large-

scale trends is important, because these were responsible for

the observed peaks and troughs in nest density across space,

not the small-scale interactions. This again is relevant for

weed management, because, in areas void of nests, weed

seeds will have a higher probability of escaping predation

by M. barbarus and entering the seed bank.

The results of this study indicate that if weed seeds

escape predation by the harvester ant, M. barbarus, this will

be mainly due to large-scale trends and not due to small-

scale interactions between colonies. At a small scale, nests

were all more or less regularly distributed. Identifying and

understanding the factors that influence the large-scale

trends is, therefore, essential for optimizing biological weed

control by harvester ants. We now know that the factors that

influence the large-scale trend are likely to vary consider-

ably from year to year, which means that our current choice

of factors was inappropriate, because they were static.

However, many other biotic and abiotic factors, not quan-

tified here, could potentially be linked to the large-scale

trend, which could then explain the observed patterns and

help manage these beneficial insects.
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SIG i Teledetecció, ETSEA, Universidad the Lleida for extensive help

with georeferencing. We also thank Xavier Llobet for allowing us to

use his cereal fields and for his patience and hospitality. This research

was funded by the University of Lleida (PhD grant to V. Atanackovic)

and the Ministry of Education and Science of Spain (projects AGL

2007-60828 and RYC-2006-000697 to P.R. Westerman and

AGL2010-22084-C02-01 to J. Torra).

References
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