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Introduction

A collective intelligence is a group of agents that together
act as a single cognitive unit. The iconic example is a
swarm of honeybees cooperating to make decisions, build
complex nest structures, allocate labor, and solve a host of
other complex problems. Its defining characteristic is
coordination without central control. Intelligence does
not belong to a single knowledgeable leader, but instead
is distributed across the entire group. Adaptive collective
behavior emerges from interactions among a large num-
ber of individuals, each applying appropriate decisions
rules to strictly local information. Although especially
well-described in the social insects, collective intelligence
is found in many systems, from the complex behavior of
bacterial communities to the coordinated motion of fish
schools and bird flocks. These examples have in turn
inspired the development of artificial approaches to col-
lective robotics and decentralized computational algo-
rithms. This article reviews the major characteristics that
allow collective intelligence to emerge from individual
behavior, using both illustrative examples from well-
studied cases and models that reveal the basic principles.
Self-Organization and Positive Feedback

A revealing example of collective intelligence is the
forging of consensus decisions by colonies of the ant
Lasius niger. These ants exploit sugary food using chemical
trails that recruit nest-mates to rich sources. If a colony is
presented with two artificial feeders filled with sugar
water of different concentrations, it will soon develop a
busy trail to the better one, largely ignoring the other
(Figure 1(a)). This collective decision can be explained
by a very simple model that does not require any ant to
visit both feeders and determine which is better. Instead,
the colony’s choice emerges from the dynamics of recruit-
ment behavior at each site. An ant that finds a feeder
deposits a trail to it with a probability that depends on
its richness. The trail summons nest-mates who reinforce
it based on their own assessment, making it still more
attractive to further recruits. Although recruitment hap-
pens at both feeders, quality-dependent reinforcement
means faster growth for the trail to the better one. The
difference is amplified as the stronger trail outcompetes
the weaker one in attracting and retaining foragers.
Eventually, the weaker trail dies out altogether, starved
of the reinforcement needed to overcome evaporation of
the volatile trail pheromone.

This process illustrates several principles of collective
intelligence. First, group-level order self-organizes from a
large number of purely local interactions. Each ant applies
appropriate decision rules to limited information about a
single feeder or trail, and none has a synoptic picture of
the whole problem. Second, control of foraging is highly
decentralized, with no leader or hierarchy to guide the
group’s behavior. All ants are essentially identical in their
behavioral rules and in their capacity to affect the behav-
ior of others. Third, and most important, coordination
depends on positive feedback. Small initial differences in
trail strength are strongly amplified as each ant’s rein-
forcement makes further reinforcement more likely. In
this way, many small actions grow into a major group
accomplishment.

Similar positive feedback underlies a broad range of
complex collective behavior. Ants use pheromone trails to
choose not only the better of two feeders, but also the
shorter of two routes to the same feeder. Honeybees use
another method of recruitment the dance language to
allocate foragers among food sources or to choose a new
home. For ants of the genus Temnothorax, tandem runs and
social transports provide the recruitment needed for col-
lective nest site selection. Positive feedback can also
emerge without explicit signaling. It is sufficient for one
animal to imitate the actions of another, thus becoming a
model for still more imitators. In this way, a group of
cockroaches can settle on a common aggregation site
using only simple rules that make joining an aggregation
more likely (and leaving it less likely) as its size increases.
Nonlinearity and Consensus

Although positive feedback is central to group coordination,
mathematical models suggest that it is not enough for the
clear decision-making shown by L. niger colonies. These
models predict that consensus on a single option will hap-
pen only when feedback is highly nonlinear. That is, dou-
bling a pheromone trail’s strength must lead to more than a
doubling of the rate at which it attracts recruits. Only then
will differences between options be amplified sufficiently to
eliminate all but a single trail. If the growth in trail attrac-
tiveness is linear, the best site will still be favored, but
weaker recruitment will persist at lesser sites.
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304 Collective Intelligence
The consensus-building power of nonlinear responses
shows very clearly when a colony of L. niger is presented
with two identical feeders. The ants randomly choose one
feeder and exploit it heavily while largely ignoring the
other one (Figure 1(b)). The key to this consensus is
amplification of random variation. If one feeder happens
to be found first and thus gains a small advantage in number
of visitors, nonlinear positive feedback will rapidly amplify
this difference, allowing the early leader to monopolize the
colony’s foragers.
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Figure 1 Collective decision-making by colonies of Lasius

niger ants. (a) Change over time in the number of workers visiting
two feeders, one with 1M sucrose solution (solid line) and the

other with 0.1M solution (dashed line). (b) When presented with

two identical 1-M feeders, the ants randomly choose one, largely
ignoring the other. (c) If the 1-M feeder is presented after a trail is

already established to a weaker feeder, the ants cannot switch

their efforts to the better source. Adapted from Camazine S,

Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, and
Bonabeau E (2001) Self-Organization in Biological Systems.

Princeton, NJ: Princeton University Press.
Nonlinear responses are called for whenever groups
value consensus. Cockroaches, for example, may benefit
from better predator defense and environmental homeosta-
sis when they form a single large aggregation (Figure 2(a)).
For L. niger, the benefit may be better defense of the
honeydew-secreting homopterans that are a common nat-
ural sugar source. In other cases consensus is not ideal,
and groups may do better with linear responses that
produce split decisions. The honeybee’s waggle dance is
rather linear: if a bee doubles her dance effort, she
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Figure 2 Nonlinear responses underlying collective behavior.
(a) A cockroach’s probability of leaving a shelter declines sharply

as the number of roaches there increases. This nonlinear

response helps a group of roaches reach consensus on one of

two available shelters. Reproduced from Ame JM (2006) Collegial
decision making based on social amplification leads to optimal

group formation. Proceedings of the National Academy of

Sciences USA 103: 5835–5840. (b) Nest site scouts of

Temnothorax curvispinosus use a quorum rule when deciding
whether to fully commit to a candidate site as their colony’s new

home. Crosses show the proportion of ants deciding to transport,

rather than lead a tandem run, as a function of the population of
the site being recruited to. Line shows a nonlinear function fit to

these data. Reproduced from Pratt SC (2005) Behavioral

mechanisms of collective nest-site choice by the ant

Temnothorax curvispinosus. Insectes Sociaux 52: 383–392.
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approximately doubles the number of recruits that she
summons. Accordingly, a colony presented with two fee-
ders exploits each at a level roughly proportional to its
quality. This may allow colonies to respond more quickly
if relative quality changes, a likely event for the ephemeral
nectar flows on which bees depend.

On the other hand, consensus is critical for nest site
selection by social insects, lest part of the sterile work
force become separated from the reproductive queen.
Interestingly, the two best-studied cases rely on linear
forms of recruitment: honeybees use waggle dances and
Temnothorax ants use tandem runs, in which recruits are
led singly to a candidate site. Both groups are quite adept
at reaching consensus on the best of several candidates,
but how do they do so with these linear responses? The
key appears to be re-introduction of nonlinearity in the
form of a quorum rule (Figure 2(b)). Emigrations begin
with a deliberative phase characterized by slow recruit-
ment of scouts to multiple candidate sites. This gives way
to rapid movement of the bulk of the colony to the first
site whose population reaches a threshold. Models show
that this nonlinear change in recruitment effectiveness
increases the colony’s likelihood of unanimously moving
into the best nest, rather than splitting among several.
The Wisdom of Crowds

So far we have considered sociality as a constraint on
intelligence: the group must reach a common solution
despite its members’ limited knowledge and influence.
Theoretically, group living can offer a cognitive advan-
tage, allowing many poor decision-makers to achieve
greater accuracy than a well-informed individual. The
basic insight was had by the Marquis de Condorcet in
the eighteenth century. He described a jury of n members
deciding between two options, each individual having
probability p of making the correct decision. If each
votes independently, with the group selection going to
the option getting a majority of votes, then the probability
that the jury’s decision is correct rises with jury size,
provided that p>0.5. In other words, if everyone meets
the rather low standard of exceeding a chance probability
of being correct, the group as a whole can approach a
100% chance of making the right choice.

This ‘wisdom of crowds’ has many applications in
human society, from democratic voting systems and jury
trials, to prediction markets and internet search engines
(Surowiecki, 2004). Similar advantages have been posited
for animal groups, but few studies have been made. The
best evidence is from experiments on different size groups
of stickleback fish making movement decisions. Larger
groups were better at choosing to follow the more attrac-
tive of two leaders.
Social enhancement of decision-making poses some-
thing of a paradox: it requires that group members influence
each other, but also that each choice be independent. If
individuals simply copy one another, then their mistakes
become correlated rather than cancelling each other out. In
humans, this is the problem of ‘groupthink.’ On the other
hand, if everyone relies only on his own knowledge, then no
one gains the benefit of others’ wisdom. The solution lies in
finding the proper balance of personal and social informa-
tion. Foraging ants, for example, receive social information
in the form of recruitment signals that bring them to options
that others have found valuable. Once there, however, each
one makes her own independent assessment before herself
recruiting.

A simple model of collective choice suggests that
striking the right balance is aided by the nonlinear
responses described above. Consider a group in which
each member chooses an option with a probability that
depends both on its intrinsic quality and on the number of
other group members that have already selected it. Inclu-
sion of a social influence improves performance compared
to purely independent decision-making, but this effect is
much greater when the response to others is highly nonlin-
ear. That is, accuracy increases if individuals follow the
example of others only when their number exceeds a
threshold. In this way, the group gains the advantage of
pooled opinions without being misled by individual errors.

There are costs as well as benefits to the integrating
power of nonlinearity. In a small proportion of cases,
nearly all group members choose the wrong option, due
to chance amplification of a few early mistakes. Experi-
ments also indicate that very nonlinear recruitment sys-
tems restrict decision-making flexibility. When a colony
of L. niger is given a high quality feeder after first deve-
loping a trail to a mediocre feeder, it is unable to switch its
foraging to the better target (Figure 1(c)). The attractive
power of the established trail is simply too great for a
nascent trail to overcome. Honeybees faced with the same
challenge can nimbly shift their foraging effort due to
their more linear recruitment response.
Collective Motion

Some of the more spectacular examples of collective
intelligence are seen in the acrobatic motions of fish
schools and bird flocks, in which thousands of individuals
execute rapid and near-simultaneous turns. The collec-
tive structures they form – parallel streams, spinning
balls, toruses – may contribute to foraging efficiency or
predator avoidance, or they may simply ensure that the
group remains cohesive as it moves. Much of this coordi-
nated behavior can be reproduced by self-propelled par-
ticle (SPP) models. In these models each animal chooses
its direction and speed of motion based on two sources of
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information: (1) its own desired heading, perhaps guided
by direct knowledge of the location of a food source,
predator, or migration destination, and (2) the position
and headings of its neighbors within the group. Cohesion
is maintained by a policy of attraction to more distant
group members, while collisions are avoided by turning
away from neighbors who get too close. Common direc-
tion depends on alignment to others within a certain
radius. Models of this type can account not only for
cohesive movement, but also for the rapid transmission
of changes in direction. The imitative behavior in these
models plays the same role as recruitment in social forag-
ing: it creates a positive feedback cascade that quickly
spreads new information through the group.

Similar mechanisms may explain how a group can find
its way to a destination known to only a few of its mem-
bers. A honeybee swarm flies unerringly to its new home
even though only 5% of its several thousand members
know the location. Scouts appear to guide the ignorant
majority by flying through the swarm at high velocity in
the direction of the target site. An SPP model shows how
these streakers could plausibly guide the swarm, if unin-
formed bees follow simple rules for avoidance at close
distances and attraction and alignment at longer distances.
A more general model of this type was developed by
Couzin and colleagues. It shows that guidance is possible
even when knowledgeable individuals fly at the same
velocity as others and balance their directed flight with
the same kind of social information used by uninformed
bees. This model does not assume that group members
can tell who is informed, but nonetheless predicts effec-
tive navigation toward the goal.
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Figure 3 Guidance and decision-making in collective motion. (a) R
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difference, the group reaches consensus on one heading or the othe
Franks NR, and Levin SA (2005) Effective leadership and decision-ma

of homing pigeons show a similar switch from compromise to leaders

the birds take an intermediate route. When the difference surpasses a

and very different from that of the other. Reproduced from Biro D, Su
leadership in pigeon homing. Current Biology 16: 2123–2128. In each

a function of the difference in subset headings, ranging from blue ( p
Decision-Making on the Move

What if the group contains two kinds of knowledgeable
individuals, each with a different preferred heading?
Models suggest that the outcome depends on the number
favoring each direction, with even a small majority able to
win over the whole group. If numbers are similar and
desired headings are not too different, the group is
expected to compromise on an intermediate direction.
Above a critical difference in headings, the group either
splits in two or reaches consensus on one of the two
preferred directions (Figure 3(a)). In case of consensus,
the choice of heading is random, unless there is a differ-
ence in how much each group weighs its preferred direc-
tion relative to social information. Even a small advantage
in motivation will increase a subgroup’s power to win over
the whole group. This result suggests that leadership by a
small number of individuals can have major influences on
the behavior of otherwise self-organized groups.

Some support for these models is found in the
observed behavior of homing pigeons traveling either
alone or in pairs from a common release site (Figure 3(b)).
After multiple solo flights, each pigeon develops an idiosyn-
cratic route. When traveling together, pairs show three pos-
sible outcomes: they separate and follow their individual
routes, they compromise on an average route, or they both
adopt the preferred route of one bird. Pairs that stay together
show the distance dependency predicted in the model: com-
promise at short distances and selection of one bird’s prefer-
ence at larger ones. Leadership was also evident, with some
birds consistently more likely than others to prevail, perhaps
on the basis of their higher social status.
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Pairs of pigeons also took shorter paths home than did
solo birds, providing some evidence for the ‘many wrongs’
hypothesis. This idea holds that many individuals, each
with a noisy estimate of the heading to a common desti-
nation, can average out their independent errors to find a
much more precise group heading. In addition to improv-
ing navigation, models suggest that this kind of process
can help animals follow subtle gradients toward food
concentrations or better physical environments.
Phase Transitions

The switch from compromise to consensus in collective
motion is one example of a phase transition, a central
feature of nonlinear collective systems. Phase transitions
are dramatic changes in behavior in response to continuous
variation of a single key feature. Another example is seen
in the trail-laying antMonomorium pharaonis. Below a critical
number of foragers, a colony cannot sustain a trail; above
this number the positive feedback of trail reinforcement
is strong enough to overcome evaporative losses. Thus, a
group switches suddenly from solitary to group foraging
as its size increases.

Similar sensitivity to group size is seen in the collective
movements of gregarious locusts. Massive flying swarms
of adult locusts are preceded by the assembly of younger
insects into ordered marching bands. An SPP model
shows how these bands can self-organize from each indi-
vidual’s tendency to align with nearby members, com-
bined with a competing tendency to maintain its current
heading. As their density increases, the locusts undergo a
phase transition from random movement to ordered
motion at a common direction and speed. For intermedi-
ate densities, direction frequently changes, but at higher
densities it remains constant for long periods. Very similar
phase transitions are in fact observed in groups of walking
locusts confined to a ring-shaped arena.

Phase transitions may have significant impacts on a
group’s ability to match group behavior to changing cir-
cumstances. Near a phase transition, nonlinear systems
have multiple stable states and can shift relatively easily
from one to another, as demonstrated by the locusts’
directional changes. This implies that adaptive selection
of the best behavior may be easiest near the transition. For
example, a single individual that detects a predator can
more easily lead the group away from danger if it is near a
phase transition.
Hysteresis and Group Memory

The existence of multiple stable states makes collective
behavior dependent on a group’s recent history. This char-
acteristic of nonlinear systems is known as hysteresis.
Medium-sized groups of the ant M. pharaonis, for example,
can forage either solitarily or with trails, depending on how
the colony reached its current size. If reduced from a size at
which a trail formation is easy, then the medium-sized
group can maintain a trail already formed. If expanded
from a size at which trail formation is impossible, the
medium-sized group will not be able to build one from
scratch. Thus, two otherwise identical groups can show
very different behavior, based on their different histories.

Hysteresis creates a kind of group memory. Fish
schools, for example, can form a remarkable variety of
collective structures, ranging from disordered swarms,
to parallel revolution about a central point, to cohesive
directed motion. Mathematical models show that transi-
tions from one structure to another can be achieved by
simply changing the spatial range over which individual
fish attempt to align themselves with their neighbors. For
any given range, however, more than one structure may be
stable. When fish in a disordered swarm increase their
zone of alignment to a moderate value, they begin to swim
in an orderly torus. When fish in a mobile, directed group
decrease their zone of alignment to the same moderate
value, they remain in their directed structure. Thus, the
group’s ‘memory’ of its former state determines its behavior.
It is important to note that this is not an individual
memory. Each fish follows precisely the same rules in
the two conditions, and the difference in group behavior
is an emergent property of the whole group.
Comparison to Neural Systems

The idea of collective intelligence is born from a funda-
mental analogy between societies and brains. Similar
principles of feedback, nonlinearity, and multistability
apply in both cases. Although the mechanistic details are
vastly different, the structural similarity is sometimes very
striking. For example, the house-hunting algorithms of
ants and bees have great similarity to models of decision-
making in the primate brain. Both assume competing
streams of noisy evidence for different options borne
either by sensory neurons or the recruitment behavior
of scouts. This evidence accumulates, either as activity
within a particular neural center or as a population of
scouts advertising and visiting a nest site. A decision is
made when the activity or population for one option
surpasses a threshold, marking it as the chosen option.

Marshall and his colleagues made this loose analogy
more rigorous by expressing both systems in the same
modeling framework. Their results suggest at least one
important functional difference: the neural system can
achieve a statistically optimal tradeoff between decision
speed and accuracy, because it includes mutually inhibitory
connections between competing centers. No such connec-
tions are currently known for the ants or bees. However, the
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honeybee stop signal is an inhibitory behavior that con-
ceivably plays such a role, leaving open the possibility that
bees too can achieve statistical optimality.

Comparison to neural models underscores an important
common feature of brains and societies: the role of forget-
ting. Neural decision systems depend on a steady loss of
activity in the absence of new external input. This improves
sensitivity to changes in the strength of a stimulus. In the
same way, a honeybee scout eventually stops dancing for a
candidate nest site that she has found, no matter how good
it is. This helps the colony to avoid stalemates in which
bees obstinately advertise more than one site. It also allows
the colony to switch its attention from an early mediocre
discovery to a better site found later.
Rationality

One might expect that an intelligent decision-maker would
also be a rational one, but this is not always the case. When
faced with certain kinds of challenging decision problem,
animals and humans are likely to make errors that can
prevent them from consistently maximizing their fitness.
For example, decision-makers will change their preference
between two options if a third, less attractive distracter
option is also presented. These errors often occur when
options vary in multiple attributes, such that no option is
clearly superior in all attributes. This makes determining
which is best a computationally challenging task. Individuals
can deal with this by using simple rules of thumb based on
local comparisons among options. Thus, if it is hard to say
whether A or B is better, A may be chosen over B if it more
clearly exceeds a distractor C than does B. Such rules
may work well most of the time, but fail for particularly
challenging cases.

Rationality has only begun to be addressed for collective
decision-makers, but early work by Pratt and his colleagues
suggests that collectives may be less prone to this kind of
comparative error. They presented Temnothorax ant colonies
with a choice that required them to trade off two prized
features of nest sites – entrance size and light level. Colonies
did not show the irrational changes in preference com-
monly seen when individual animals face a similar choice.
An intriguing possibility is that the ants’ highly distributed
decision-making filters out irrational errors. Few individual
ants know of all the options under consideration by the
colony, and thus do not have the opportunity to make the
comparisons that bring about irrationality. Thus, an appar-
ent constraint – the relative ignorance of individual ants –
may help the colony as a whole to perform better.
Applications

In recent years, swarm intelligence has proven a fertile
source of inspiration for the design of artificial systems. In
computer science, ‘ant algorithms’ provide an effective
means of solving the hardest kind of optimization pro-
blems, where the total number of possible solutions is far
too great for all to be tested. The basic idea, inspired by ant
foraging, is to let distinct computational agents (‘ants’)
sample the solution space, score the quality of each sample,
and ‘recruit’ other agents to test variations of promising
leads. This general approach has been used to design
telecommunication networks and to schedule complex
transportation routes. In robotics, ongoing research aims
to design swarms of robots that can inspect dangerous and
inaccessible places, efficiently monitor large areas, or build
structures in remote and dangerous locations.

Engineers are attracted to several advantages of natural
collectives. They are highly robust, working well if indivi-
dual members are lost or if communication channels are
broken. Cognitive sophistication is a feature of the whole
group, not each member, so individual agents can be simple
and cheap. Collectives work well at different population
sizes without requiring wholly different control algorithms.
They are also effective in the variable environments typical
of real-world problems. In fact, randomness is an important
component of natural collective intelligence, as when ant
trails amplify random variation to select a single food
source. Finally, swarms do not require unwieldy central
control networks that can be extremely difficult to design
and manage for large and complex systems.

In designing artificial systems, engineers often stray far
from the original biological inspiration, as their goal is
to solve a problem, not to mimic a natural system. None-
theless, natural models are still crucial to the process, if
only as a proof that solutions to certain difficult problems
are attainable. In addition, the work of engineers and
computer scientists can enhance the study of natural col-
lectives, by providing useful analytical tools and concepts.
Indeed, much of the work described in this article is a kind
of reverse engineering, looking for the hidden mechanisms
that explain complex collective behavior. Future discov-
eries will depend on the exchange of insights between
engineers and biologists about both natural and artificial
collective intelligence.

See also: Communication Networks; Consensus Deci-

sions; Decision-Making: Foraging; Distributed Cognition;

Group Movement; Honeybees; Insect Social Learning;

Nest Site Choice in Social Insects; Rational Choice

Behavior: Definitions and Evidence; Social Information

Use.
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