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Abstract: Alkaloids are important metabolites found across a variety of organisms with diverse
ecological functions. Of particular interest are alkaloids found in ants, organisms well known for
dominating the ecosystems they dwell in. Within ants, alkaloids are found in venom and function as
potent weapons against heterospecific species. However, research is often limited to pest species or
species with parasitic lifestyles and thus fails to address the broader ecological function of ant venom
alkaloids. Here we describe a new species of free-living Megalomyrmex ant: Megalomyrmex peetersi
sp. n. In addition, we identify its singular venom alkaloid (trans-2-butyl-5-heptylpyrrolidine) and
elucidate the antibiotic and insecticidal functions of its venom. Our results show that Megalomyrmex
peetersi sp. n. venom is an effective antibiotic and insecticide. These results are comparable to venom
alkaloids found in other ant species, such as Solenopsis invicta. This research provides great insight into
venom alkaloid function, and it is the first study to explore these ideas in the Megalomyrmex system.

Keywords: venom; alkaloid; Megalomyrmex peetersi; insecticide; antibiotic

Key Contribution: This research describes a new species of free-living Megalomyrmex ant.
This research is the first to elucidate the venom function of a free-living Megalomyrmex ant.

1. Introduction

From nicotine to serotonin, alkaloids are a diverse group of metabolites active across many forms
of life with far-reaching ecological ramifications [1]. Alkaloids are loosely defined as naturally occurring
heterocyclic organic compounds containing a nitrogenous base in a negative oxidation state. They are
classified based on biological activity, taxon of discovery, and chemical structure and are used in various
capacities [1]. The most well-known alkaloids are those synthesized by plants, such as caffeine by coffee
and nicotine by tobacco, as a method of defense against herbivory [2,3]. Approximately 25% of higher
plants synthesize unique alkaloids that serve similar functions [1]. Endophytic fungi, found within
plants, also produce alkaloids that are toxic to herbivorous insects and microbes [4], thus serving as a
protective symbiont [5]. Despite alkaloids being toxic to many insect herbivores, some have evolved
the ability to sequester them after ingestion [6], employ them in personal defense [7,8], and even
allocate them to offspring for protection [9]. Insectivorous predators can also sequester alkaloids for
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protection by ingesting alkaloid-synthesizing prey (e.g., ants, millipedes, mites), with one of the most
notable examples being the conspicuously colored poison dart frogs (Dendrobatidae) [10]. In these
ways, alkaloids are powerful drivers of ecological interactions. This is perfectly exemplified in ants,
a group of organisms well known for defining the ecosystems they dwell in [11].

Alkaloids are rare among the ca. 15,000 ant species, only found in approximately 10 of
the 500 genera [12,13]. Eight of these genera belong to the widely studied tribe Solenopsidini,
where alkaloids are venom components [13]. Solenopsis and Monomorium, the most well-studied
genera of the Solenopsidini tribe, employ pyrrolidine and piperidine alkaloids communicatively and
combatively towards heterospecific species. Two pyrrolidine venom alkaloids are utilized by the
Monomorium rothsteini species complex in interspecific competition to repel other ant species from
food, which allows for a monopolization of resources [14,15]. Solenopsis fugax (Latreille), a facultative
parasite of other ants, also deploys a repulsive pyrrolidine when invading host nests to steal brood.
Perhaps most notably, piperidines are responsible for the “burning” sensation that the fire ant species
Solenopsis invicta Buren and Solenopsis geminata (Fabricius) deliver when they sting, creating an effective
defense against threats to the colony [16]. These same Solenopsis invicta piperidines exhibit strong
insecticidal properties [17], allowing S. invicta to be an effective predator and outcompete other
ant species [16]. In addition to these combative properties, S. invicta alkaloidal venom has been
shown to have antibacterial properties, inhibiting both Gram-positive and Gram-negative bacteria [18].
Solenopsis invicta queens utilize these antibacterial properties by spreading venom onto their eggs,
inhibiting the growth of pathogenic microbes [19]. Solenopsis invicta workers, which also produce
these alkaloids, have been speculated to disperse their venom onto offspring through gaster flagging
within the brood chambers as antimicrobial protective agents [20]. However, focus on Solenopsis and
Monomorium fails to fully capture ant alkaloid diversity and thus limits our understanding of the
ecological implications of ant alkaloids. Among the alkaloid-synthesizing ant genera, Megalomyrmex has
great alkaloid structural diversity [21–26], offering an opportunity to further elucidate ant alkaloid
evolution and function.

The neotropical genus Megalomyrmex (Solenopsidini) consists of 44 species that produce at least
five classes of alkaloid: pyrrolidines, pyrrolizidines, piperidines, pyrrolines, and indolizidines [21–26].
This alkaloid structural diversity is complemented with variation in lifestyle and natural history
traits influenced by venom use. Approximately 10 species are social parasites (one social species
parasitizing another) that span a spectrum of lifestyles from facultative thieves to obligate guest
ants [21,23]. The thief ants Megalomyrmex mondabora Brandão, Megalomyrmex mondaboroides Longino,
and Megalomyrmex silvestrii Wheeler produce eight different alkaloids from three different structural
classes and use these compounds to subdue their fungus-farming ant hosts by stinging or emitting
an alkaloidal aerosol [23]. The guest ants Megalomyrmex adamsae Longino use their venom against
host queens while infiltrating the nest [26]. Similarly, Megalomyrmex symmetochus Wheeler guest ants
use their venom to suppress host aggression but, remarkably, also use their venom against another
competing social parasite, Gnamptogenys hartmani (Wheeler) raider ants. Megalomyrmex symmetochus
venom serves not only as a lethal toxin to these raiders but also as a behavior modifier, causing the
raider ants to turn on one another and kill their own nestmates [22]. The majority of Megalomyrmex are
free-living, nonparasitic species that produce a wide array of pyrrolidine alkaloids [26], likely used
as repellents during competitive interactions when scavenging [24]. One example of the efficacy of
free-living Megalomyrmex alkaloids comes from the new species Megalomyrmex peetersi we describe
here. While observing ant baits in Costa Rica, we found that a few workers of the new species
Megalomyrmex peetersi (referred to as Megalomyrmex wallacei Mann) arriving to a cookie bait monopolized
by Pheidole workers were able to disperse hundreds of individuals by exhibiting characteristic
alkaloid-dispending behaviors known as gaster flagging [20,23] and “bucking” behavior [27].

Here we describe the new free-living species Megalomyrmex peetersi, which synthesizes
trans-2-butyl-5-heptylpyrrolidine as its exclusive venom alkaloid. This alkaloid has previously
been found in several Monomorium Mayr species [28,29], Solenopsis Westwood species [15,30], and other
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Megalomyrmex Forel species [24,25,31]. Given that M. peetersi sp. n. is a free-living ant species that nests
in the leaflitter and likely interacts with microbial pathogens and other insect species [32], we sought to
investigate the antimicrobial and insecticidal properties of its venom. This is among the first studies to
experimentally describe alkaloidal function in free-living Megalomyrmex, furthering our understanding
of this genus. More broadly, this work will provide greater insight into how alkaloids influence
ecological interactions in an important group of organisms.

2. Results

2.1. Taxonomic Account

Megalomyrmex peetersi Prado and Adams, sp. n. zoobank.org:act:B335D580-B01B-48F8-8AC9-C906
D6E402C0 Megalomyrmex wallacei Mann, 1916: 445 (in part).

2.1.1. Repositories

Specimens from the following myrmecological collections were studied and are stored at:
Coleção Entomológica Padre Jesus Santiago Moure, Universidade Federal do Paraná (DZUP; Curitiba,
PR, Brazil); John Longino Personal Collection, University of Utah (JTLC; Salt Lake City, UT, USA);
Coleção Entomológica do Museu Paraense Emílio Goeldi (MPEG; Belém, PA, Brazil); Coleção de
Hymenoptera do Museu de Zoologia da Universidade de São Paulo (MZSP; São Paulo, SP, Brazil);
and Museum of Comparative Zoology (MCZ; Cambridge, MA, USA).

2.1.2. Type Material

Holotype worker (Figure 1). Costa Rica: Heredia: La Selva Biological Station, 50–150 m,
10◦26′ N 84◦01′ W, iv.1994, INBio-OET, N Barger & J Longino cols., baiting study, NNB/PLT/02,
INBIOCRI001242851 MZSP.

Paratype workers (6 workers). Same data as holotype: INBIOCRI001242849
MZSP, INBIOCRI001242850 MZSP, INBIOCRI001242854 MZSP, INBIOCRI001242856 MZSP,
INBIOCRI001242857 DZUP, INBIOCRI001242858 MPEG.

2.1.3. Diagnosis (Worker)

1. Piligerous punctures on head surface slightly raised and coarser than mesosoma (Figure 1a)
2. Dental formula 1 + 4 equally spaced, with the first tooth slightly smaller and the apical tooth

slightly larger (Figure 1b)
3. Antennal clava three segmented comparatively enlarged (Figure 1c)
4. Promesonotal suture distinct and well impressed (Figure 1d)
5. Metanotal sulcus deeply impressed and wide
6. Absence of a sulcus between the anepisternum and katepisternum
7. Ventral portion of the petiole with a translucent flange
8. In lateral view, ventral region of postpetiole with globose shape (Figure 1e)

2.1.4. Worker Description

Measurements (n = 6, holotype values within parentheses): HW 0.96–1.03 (0.96), HL 1.32–1.46
(1.32), ML 0.59–0.71 (0.61), EL 0.30–0.36 (0.34), SL 1.53–1.75 (1.53), WL 1.78–2.05 (1.92), PrW 0.69–0.75
(0.69), MFL 1.84–2.13 (1.84), PL 0.75–0.8 (0.76), PH 0.48–0.53 (0.48), PPL 0.48–0.71 (0.48), PPH 0.48–0.51
(0.5), ATW 1.09–1.26 (1.09).

Worker (Figure 1). Color. Surface of the general body ranging from orange-brown to dark
brown; when orange-brown, the head and gaster slightly darker (Figure 1d,f); pilosity yellowish.
Pilosity. Filiform, suberect, and abundant, evenly distributed along the entire body surface.
Ocular pilosity present, with sparse flexuous setae. Antennal clava with appressed pilosity,
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relatively smaller and thinner from the remainder of the antennae. Anterior margin of the clypeus with
sparse and elongated pilosity, especially those of the median portion, which is even more elongated.
Apex of tarsomeres inner face with usually three or more robust spiniform setae. Surface sculpturing.
Shiny appearance with piligerous punctures usually coarser on the head. Surface of mandibles smooth
and shiny, with abundant piligerous punctuations (Figure 1b); frontal region of the head, just below
the eyes with concentric carinae, ranging in quantity and degree of impression; remaining body
predominantly smooth; except for the presence of the two longitudinal carinae crossing the region
of the metapleural gland bulla, for the propodeal declivity with few concentric carinae, and apical
portion of the gaster, finely imbricate.
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Figure 1. Megalomyrmex peetersi sp. n. holotype worker. (a) Head in frontal view, (b) mandibles,
(c) funiculus of antenna, (d) lateral view, (e) postpetiole, in lateral view, and (f) dorsal view.

Size. Medium (WL 1.78–2.05). Head. Oval shaped with distinct occipital carina, visible in
frontal view (Figure 1a). Dental formula 1 + 4 equally spaced, with the first tooth slightly smaller
and the apical tooth slightly larger (Figure 1b). Median portion of clypeus broad and rounded.
Frontal carina very short, not extending beyond the posterior margin of the antennal fossa. Antennal
clava three segmented comparatively enlarged (Figure 1c), apical segment slightly longer than the
second and third. Eyes round, larger, protruding, with about 15 small ommatidia in diameter,
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diagonally arranged placed just below midlength of the head. Mesosoma. In lateral view, mesosoma
forming two convexities, a slightly higher formed by promesonotum and a lower formed by propodeum
(Figure 1d). Promesonotal suture well impressed and metanotal groove deep and wide; absence
of a sulcus between the anepisternum and katepisternum. Propodeal spiracle round, surrounded
by the cuticular swell. Foraminal carina complete and well developed. Metasoma. In lateral view,
subpedunculated petiole, with petiolar node subtriangular; ventral portion of the petiole with a narrow
translucent flange. In lateral view, region anterior and posterior of postpetiole with globose shape
(Figure 1e), without projections.

2.1.5. Ergatoid Queen

Measurements (n = 1): HW 1, HL 1.36, ML 0.67, EL 0.36, SL 1.53, WL 1.94, PrW 0.78, MFL 1.84,
PL 0.71, PH 0.55, PPL 0.53, PPH 0.55, ATW 1.42.

Comments (Figure 2). Morphologically similar to the worker, distinguished by: Pilosity. Erect and
abundant, distributed along the entire body surface (Figure 2a–c). Surface sculpturing. Piligerous
punctures coarser and distributed over the entire body surface; concentric carinae present in the
frontal lobes and in the propodeum are coarser and abundant. General body. Size slightly larger and
gaster substantially higher. Teeth more pointed. Lateral ocelli present and median ocellus absent.
Promesonotum strongly convex; promesonotal suture strongly impressed (Figure 2c). In lateral view,
petiolar node thinner; ventral portion of postpetiole more pronounced (Figure 2c).
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Figure 2. Megalomyrmex peetersi sp. n. ergatoid queen. (a) Head in frontal view, (b) dorsal view,
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2.1.6. Male

Measurements (n = 1): HW 0.97, HL 1.19, ML 0.59, EL 0.57, SL 0.57, WL 2.42, PrW 1.04, MFL 1.85,
PL 0.92, PH 0.47, PPL 0.66, PPH 0.59, ATW 1.38.
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Comments (Figure 3). Boudinot et al. [28] described the male of this species as M. wallacei.
According to the authors and with the specimen examined in this work, males of this species are
morphologically recognized by (1) the presence of blackened piligerous punctures on the body surface
(Figure 3a,b); (2) third antennal segment apically flattened and curved (Figure 3c); (3) in lateral view,
petiole with raised and convex node and postpetiolar node globose dorsally (Figure 3b); (4) ventral
region of postpetiole conspicuous, as inverted triangle (Figure 3b).Toxins 2020, 12, x FOR PEER REVIEW 6 of 17 
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and (c) lateral view.

2.1.7. Distribution and Nesting Biology

Megalomyrmex peetersi has been recorded from South America and Central America (Figure 4).
In South America, it was recorded in the departments of Chocó and Antioquia. In Central America,
the species has been found in protected areas of lowland tropical rainforests in Costa Rica and Panama.

All colonies were found nesting either close to the ground in vegetation or within the leaflitter.
When on or near live plants, they were at the base of palm leaves or bromeliads. They most frequently
occupied old fallen palm stems with hollowed cavities ca. 5–10 cm in length. Signs suggest the
ants manipulate nesting material and structure by adding debris to cover holes or build thin walls.
When nesting between leaves on the ground, workers hang upside down on the top leaf holding
brood. Colonies readily move with the slightest disturbance and, therefore, need to be collected quickly
after discovery.

Palm vegetations (Arecaceae) identified in Costa Rica include Welfia regia, Cryosophila warscewiczii,
Asterogyne martiana, and Geonoma spp. Other vegetations include Dipteryx panamensis trees,
Psychotria elata shrubs, and Salpichlaena volubilis ferns, as well as Asplundia spp., Piper spp., Adiantum sp.,
Aechmea sp., Rinorea deflexiflora, Anthurium spp., Spathiphyllum sp., and Philodendron sp.



Toxins 2020, 12, 679 7 of 17

2.1.8. Additional Information

Etymology

The species was named in honor of the myrmecologist Dr. Christian Peeters (1956–2020).
Dr. Peeters was born in Belgium and, since 1991, has served as a research professor at the Institute of
Ecology and Environmental Sciences at Sorbonne University, France. He made valuable contributions
to science as a teacher, advisor, researcher, naturalist, and science communicator. Throughout his
brilliant trajectory, he combined field and laboratory work, publishing important contributions mainly
in the study of the evolutionary divergence of castes and the strategies of colony foundation. All authors
of this paper regret his early departure.

In addition, Peeters and Adams studied the reproductive behavior of this species (considered
M. wallacei in the paper) [33]. In this work, the authors recommended a more in-depth study of the
populations in Brazil and Central America, suggesting that it could be a new species.
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Comments

Megalomyrmex peetersi was previously identified as Megalomyrmex wallacei [27,34,35]
(e.g., Figure S1a–h). However, Boudinot et al. [27] and Peeters and Adams [33] commented on
the differences between specimens from South America and Central America, indicating the need for a
more comprehensive study. In the taxonomic revision in preparation [36], studies of the M. wallacei
type material deposited at the MCZ and an increase in sampling in the Brazilian Amazon revealed
several differences between species (Figure S1a–h), which include (1) protuberance of the eyes and
number of ommatidia (in diameter), with about 15 in M. peetersi and 20 in M. wallacei; (2) absence of a
sulcus between the anepisternum and katepisternum in M. peetersi; (3) shape of the propodeum in
lateral view, weakly convex in M. peetersi (Figure 2b) and plane in M. wallacei; (4) in M. peetersi, ventral
portion of the postpetiole globose (as mentioned by Boudinot et al. [27]) (Figure 2) and irregular and
weakly convex in M. wallacei; and (5) the surface of the integument smooth and shiny in M. peetersi and
with subopaque appearance and the presence of a stronger sculpturation on the surface of the head,
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mesosoma, and waist in M. wallacei (Figure S1a–h). Finally, beyond morphology, the distribution and
behavior differences reinforce the argument for the species distinction. While M. wallacei is distributed
throughout the Amazon and in the Amazon–Cerrado transition zone, M. peetersi is distributed in Central
America and northwestern Colombia (Figure 4). Regarding the reproductive strategy, as reported by
Peeters and Adams [34], M. peetersi has only ergatoid queens performing the reproductive function in
the colony, while M. wallacei is polygynous, with the presence of true queens in the colony.

In this sense, in the latest taxonomic revisions for Megalomyrmex [27,35], with the exception of the
specimen from Guyana [35] M. wallacei is now considered as M. peetersi.

Additional Material Examined

COLOMBIA: Antioquia: Amalfi, Cañon del Porce, Normandia, 1045 m alt., 6◦57′01” N 75◦11′36” W,
19.xii.1999, E. Vergara & F. Serna cols., En bosque, Winkler (3 workers, MZSP). Chocó: Parque Nacional
Natural Utría, Ensenada, 06◦01′01” N 77◦20′55” W, bosque abierto, 21.v.1991, M. Baena leg (2 workers,
MZSP). COSTA RICA: Heredia: La Selva Biological Station, 50–150 m, 10◦26′ N 84◦01′ W, iv.1994,
N. Barger & J. Longino cols., baiting study, NNB/PLT/02, INBio-OET, INBIOCRI001242855 (worker,
JTLC). Same data except 17.i.1993, INBIOCRI001223542 [male, MZSP]. Same data except J. Longino col.,
#3733, INBIOCRI001254263 (worker, MZSP). Same data except 10◦25′35.04” N 84◦1′32.88” W, 93 m,
19.viii.2003, Rachelle M.M. Adams col., #RMMA030819-07 (worker, MZSP); #RMMA030819-08 (worker,
MZSP); CASENT0630979 (worker, JTLC); RMMA030819-10 (worker and ergatoid queen, MZSP).
Same data except 10.vii.2005, #RMMA050710-2, CASENT0630962 (2 workers, MZSP; ergatoid queen,
JTLC). Same data except 83◦59′ W 10◦26′ N, 5.vii.2005, RMM Adams col., RMMA050703-081 (ergatoid
queen, MZSP). PANAMA: Chepo, El Llano, CRC180623-08 (9 workers, MPEG). Same data except
CRC180623-09 (worker, MPEG). Same data except R. Adams cols., RMMA180623-18 (3 workers, MPEG).
Total: 26 workers, 3 ergatoid queens, and 1 male.

2.2. Chemical Analysis

Gas chromatography–mass spectrometry (GC–MS) was performed on four workers and four larvae
from two ant colonies (RMMA180623-18 and CRC180623-09) collected near El Llano, Panama (GPS).
Single ants and two larvae were submerged and extracted in methanol. The GC–MS was set to EI mode,
using a Shimadzu QP-2010 GC–MS or a Shimadzu QP-2020 GC–MS with an RTX-5, 30 m × 0.25 mm
i.d. column. This device was set for analysis from 60 to 250 ◦C at 10◦/min. The alkaloid in the extracts
of M. peetersi had identical mass spectrum and gas chromatographic retention time with those of the
second eluting isomer of an authentic sample of 2-butyl-5-heptylpyrrolidine.

2.3. MIC Assays

A reduction in growth was observed for all six tested bacterial strains as the concentration
of 2-butyl-5-heptylpyrrolidine was increased. Bacterial growth was inhibited, as indicated by a
statistically significant decrease in OD600 at mid-log phase compared with EtOH at concentrations of
31.25–62.5 µg/mL for all bacterial strains (Table 1).

Table 1. Minimum inhibitory concentration (MIC) of 2-butyl-5-heptyl-5-pyrrolidine tested against six
bacterial strains.

Bacterial Strain MIC (µg/mL)

Escherichia coli 62.5
Staphylococcus saprophyticus 62.5

Bacillus subtilis 62.5
Aquaspirillum serpens 62.5

Corynebacterium stationis 31.25
Ralstonia pickettii 62.5
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No difference in sensitivity was found between Gram-positive and Gram-negative strains (Figure 5).
The inhibitory effect of 2-butyl-5-heptylpyrrolidine is comparable to the broad-spectrum bacteriostatic
antibiotic tetracycline at a biologically relevant concentration (Figure 5).
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Figure 5. OD600 at mid-log phase for six bacterial strains treated with 2-butyl-5-heptylpyrrolidine at
a concentration of 31.25 µg/mL. EtOH was used as a negative solvent control, and tetracycline was
used as a positive control. Filled shapes indicate Gram-positive strains and hollow shapes indicate
Gram-negative strains.

Raw venom also appears to inhibit bacterial growth at increasing concentration using the same
broth microdilution method, although differences in OD600 from the EtOH control were not statistically
significant. This could be due to unknown interactions between raw venom, EtOH, and other factors.

2.4. Insecticidal Assays

Immediately following venom application, some termites reacted by gnashing their mandibles,
“flinching,” or secreting oral fluids. Termites often showed “intoxication” symptoms following contact
with M. peetersi venom. These symptoms consistently arose prior to death and lasted at various
amounts of time. When affected, termites would follow a pattern of loss of motor control, followed by
paralysis, then death. We focused on quantifying the insecticidal properties of ant venom by measuring
mortality over time (Figure 6). A total of 62% of termites died after 1 h of venom application, and 72%
of termites were dead after 6 hours. These results suggest that M. peetersi venom is a potent insecticide.
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Figure 6. Toxicity of Megalomyrmex peetersi sp. n. venom in termites over time. The solid bar shows
mortality with a lighter buffer representing standard deviation. The dashed bar shows an ethanol
control. Compared with the control, M. peetersi sp. n. results were significantly different (p < 0.01).

2.5. LD50 Assays of Synthetic Alkaloid

Mean termite weight was 2.65 mg. LD50 for the alkaloid was calculated to be 5.21 µg/mg with a
standard error of 26.693. This high error rate can be explained by insufficient mortality, possibly due to
small dose amounts.

3. Discussion

Alkaloids are a broad class of chemicals found across disparate forms of life. These compounds
have far-reaching ecological ramifications, not only for the species that synthesize them, but also
for those that interact with alkaloid-synthesizing species. Despite the compound diversity, research
exploring alkaloid function is lacking and disproportionally describes their defensive functions [1].
In particular, little is known of the functions of alkaloids in ants, some of the most ecologically impactful
and chemically diverse organisms. Megalomyrmex species offer an opportunity to address this gap,
given the combination of multiple lifestyles and the variety of alkaloids they synthesize compared with
other ants. This study is the first to address alkaloid function in a free-living species of Megalomyrmex
ant. Our results describe a new species of Megalomyrmex ant, identifying the alkaloid it synthesizes
and detailing the likely functions of this alkaloid.

We confirmed with an authentic sample that the exclusive alkaloid of Megalomyrmex peetersi is
trans-2-butyl-5-heptylpyrrolidine, which is also found in the venom of multiple species of Solenopsidini
ants [15,25,28]. Research of Solenopsidini venom addresses several different topics, but we focused on
possible antibiotic and insecticidal functions, given that M. peetersi is a soil-dwelling ant species likely
to interact with microbial pathogens and other insect species through predation or competition.

Here we show that 2-butyl-5-heptylpyrrolidine serves as an effective broad-spectrum antibacterial
compound at low concentrations. The minimum inhibitory concentration of the synthetic alkaloid
ranged from 31.25 to 62.5 µg/mL across six bacterial strains. Our results are comparable to other studies,
where pyrrolidine alkaloids bgugaine and irniine found in the plant Arisarum vulgare Tozzetti also
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inhibited Gram-positive bacteria at low concentrations (6.25–50 µg/mL) [37]. When compared
with halogenobenzene pyrrolidine and piperidine derivatives, many of these compounds are
effective antimicrobials at concentrations higher than that of 2-butyl-5-heptylpyrrolidine (e.g.,
256–512 µg/mL) [38]. However, future studies on a wider range of microorganisms are needed
to resolve the mechanism of action for the antimicrobial properties of this compound.

The compound 2-butyl-5-heptylpyrrolidine was found on the cuticle of larvae as well as within
the venom reservoir of mature workers, suggesting that workers may apply this venom alkaloid to
their brood. Workers of other Solenopsidini species are known to apply alkaloids to the soil walls of
their nest in response to pathogens or for use as a prophylactic (e.g., [32]). It is possible that M. peetersi
applies its alkaloid venom to brood for similar reasons. Further research is needed to establish the
ecological role of venom application behavior in M. peetersi and other free-living predatory ants.

Our results also show that 2-butyl-5-heptylpyrrolidine serves as an effective insecticide, with both
toxic and behavior-modifying qualities. Our results are comparable to pyrrolidine alkaloids found in
Monomorium monomorium Bolton, where LD50 varied from 0.11 to 3.54 µg/mg in termite workers [39].
Fox et al. [17] reported intoxication effects resulting from Solenopsis invicta and S. geminata pyrroline
venom alkaloids with similar descriptions to what we observed with Megalomyrmex peetersi venom.
Previous studies in ant venom alkaloids have proposed these effects to be a result of alkaloids acting on
the central nervous system [39], although these interactions are still unclear in vivo. Nicotine, which is
well known for its insecticidal function, exhibits similar toxic and behavior-modifying qualities [1,3].
These results, combined with observations of Megalomyrmex peetersi workers applying venom to offered
prey items during feeding, reinforce trans-2-butyl-5-heptylpyrrolidine’s role as an effective tool when
hunting prey.

The singular venom alkaloid of Megalomyrmex peetersi functions as an effective antibacterial and
insecticidal agent. Paired with their natural history as a leaflitter-dwelling predator, we propose that
M. peetersi leverages these functions to thrive in its environment. These results provide insight not
only for this species but for the broader ecological functions of ant alkaloids, particularly those in the
Megalomyrmex genus with its unparalleled alkaloid diversity. Questions remain regarding functions of
other structurally distinct ant alkaloids, how certain functions may be interconnected (e.g., if insecticidal
function enables resource domination), and details concerning in situ alkaloid application.

4. Materials and Methods

4.1. Insect Colonies

Live Megalomyrmex peetersi colonies were collected and observed by Rachelle M.M. Adams
(August 2003, n = 5; August 2005, n = 11; and March 2011, n = 12) from La Selva Biological Station
(10◦24′59” N, 084◦01′12” W, 50 m elevation) [28,31]. In June 2018, two live colonies were collected
from a new site near El Llano, Panama (El Llano forest, 9◦16′46.40” N 78◦57′41.40” W, 365 m)
(RMMA180623-18 and CRC180623-09). Live colonies were transported in temporary petri dishes or
small plastic containers and then kept in ant-rearing facilities at the University of Texas at Austin,
the University of Copenhagen, and the Museum of Biological Diversity at the Ohio State University.
Panamanian colonies were placed in a darkened wooden cabinet (ca. 23 ◦C). Ant enclosures consisted of
multiple containers lined with plaster of Paris™, as well as tubes and petri dishes lined with moistened
cotton, which provided ample nesting choices for the ants. Containers lined with plaster of Paris™
were watered 2–3 times a week, and cotton from the tubes and dishes were rehydrated and changed as
necessary. A diet of Bhatkar agar (consisting of water, honey, eggs, agar, Wesson salts™, Vanderzants
vitamin mix™) and live flightless Drosophila hydei Sturtevant and Drosophila melanogaster Meigen fruit
flies were provided 3 times a week, which were both readily consumed by workers.

Five mature queen- and king-right colonies of the termite species Reticulitermes flavipes Kollar
collected near Columbus, Ohio (39◦57′40.3194” N 82◦59′55.68” W), were used in insecticidal activity
assays. Termites were housed inside large 10 × 16 inch plastic containers and fed a mixture of wood
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mulch and blocks to consume and nest in. Water was applied every few days unless condensation had
formed on the container. Colonies were reared in a controlled insect-rearing room (ca. 23 ◦C).

4.2. Taxonomic Account

4.2.1. Terminology

The morphological terminology used follows Wilson [40] and Esteves and Fisher [41] for pilosity,
Harris [42] for surface sculpture, and Bolton [43], Longino [35], and Boudinot et al. [27] for the overall
external morphology.

4.2.2. Measurements

Measurements employed were made at 50×magnifications with a Leica MZ7.5 stereomicroscope.
The measurements are given in millimeters, and abbreviations are detailed below:

• HW. Head width. Maximum width of head in full-face view (excluding the eyes).
• HL. Head length. Maximum length of head in full-face view from anterior margin of clypeus to

posterior margin of head, including occipital carina [27].
• ML. Mandibular length. Straight length of mandible, from the mandibular apex to the anterior

clypeal margin.
• EL. Eye length. Maximum length of compound eye in lateral view [27].
• SL. Scape length. Maximum length of scape in dorsal view from apex to basal flange, not including

basal condyle and neck [27].
• WL. Weber’s length. Diagonal length of mesosoma, from the anterior pronotal slope to the distal

edge of the metapleura [44].
• PrW. Pronotum width. Maximum width of the pronotum in dorsal view [44].
• MFL. Metafemur length (most suitable view). Maximum length of the metafemur, measured from

the distal margin of the trochanter to the metafemur apex [45].
• PL. Petiole length. Maximum length of the petiole in lateral view [44].
• PH. Petiole height. Maximum height of the petiole in lateral view [44].
• PPL. Postpetiole length. Maximum length of the postpetiole in lateral view.
• PPH. Postpetiole height. Maximum height of the postpetiole in lateral view.
• ATW. Abdominal tergum IV width. Maximum width of the fourth abdominal tergum with anterior,

posterior, and lateral borders in the same plane of focus [46].

4.2.3. Automontage Images

We obtained high-resolution images using a Leica M205C magnifying stereoscope attached to a
Leica DFC425 video camera at the MPEG. All illustrations were edited using Adobe Photoshop CS7®

for adjustments to enhance brightness and contrast details.

4.2.4. Distribution Map

The geographic coordinates obtained from specimen labels were entered/confirmed by Google
Earth 7.1® software, and distribution maps were created with Quantum GIS 2.18.15® software.
The shapefile of the Andean biogeographical region was obtained from published data [47].

4.3. Chemical Analysis

Gas chromatography–mass spectrometry (GC–MS) was performed on four workers and four larvae
from two ant colonies (RMMA180623-18 and CRC180623-09) collected near El Llano, Panama (GPS).
Single ants and two larvae were submerged and extracted whole in methanol. The GC–MS was
set to EI mode, using a Shimadzu QP-2010 GC–MS or a Shimadzu QP-2020 GC–MS with an RTX-5,
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30 m × 0.25 mm i.d. column. This instrument was run in the splitless mode and programmed from 60
to 250 ◦C at 10◦/min with a flow rate of 1.5 mL/min.

4.4. Artificial Preparation of Alkaloid

2-Butyl-5-heptylpyrrolidine was prepared according to the method of Jones et al. [48], by the
reductive amination of 5,8-pentadecadione to provide a cis/trans mixture of 2-butyl-5-heptylpyrrolidine.
The synthetic alkaloid was diluted in molecular-grade ethanol to produce a stock solution concentration
of 20,000 µg/mL, a concentration experimentally confirmed to inhibit bacterial growth by disk-diffusion
assays (mean inhibition zone diameter: E. coli CSH36, 24.7 mm, and S. saprophyticus ATCC15305,
29.6 mm). A twofold serial dilution was performed on this stock solution to yield eight diluted
concentrations, which were stored in glass vials at −80 ◦C.

4.5. Raw Venom Extraction

Raw venom extractions were conducted following the methods of Storey et al. [49] with minor
modifications. Megalomyrmex peetersi venom solutions (n = 5; four from RMMA180623-18 and one
from CRC180623-09) were prepared by extracting venom reservoirs from workers by pulling on the
last two abdominal sclerites and manually removing the organ with forceps. Connected stingers and
tissues were not removed to avoid a tear in the reservoir. For each solution, 20 venom reservoirs were
placed in 200 µL of molecular-grade ethanol in a glass vial. Once all venom reservoirs were in solution,
the contents of the glass vial were transferred to a plastic Safe-Lock tube and centrifuged at 8000 rpms
for 10 min to push the venom out of the reservoir and into the ethanol solvent. The supernatant was
then removed and placed back into the original glass vial, and the remaining tissue was discarded.
Each sample was quantified using GC–MS techniques outlined in above sections.

4.6. Minimum Inhibitory Concentration (MIC) Assays

4.6.1. Strains

The antimicrobial effects of 2-butyl-5-heptylpyrrolidine were evaluated using six bacterial
strains: three Gram-positive (Bacillus subtilis NCIB3610, Corynebacterium stationis ATCC6872,
Staphylococcus saprophyticus ATCC15305) and three Gram-negative (Ralstonia pickettii ATCC27511,
Aquaspirillum serpens ATCC27050, Escherichia coli CSH36). B. subtilis NCIB3610 was obtained from the
Bacillus Genetic Stock Center (BGSC; Columbus, OH, USA), and all other strains were obtained from
the collections of the Department of Microbiology at the Ohio State University. Cultures were streaked
on either Mueller–Hinton agar (BD BBL™ BD 211438, Franklin Lakes, NJ, USA) or tryptic soy agar
(Thermo Scientific™ R455002, Waltham, MA, USA) and incubated between 26 and 37 ◦C.

4.6.2. Determination of MIC

The MIC for each bacterial strain was determined using a broth microdilution procedure modified
from the Clinical and Laboratory Standards Institute [50]. Overnight cultures were diluted to a 0.5
McFarland standard (1.0 × 108 CFU/mL) with Mueller-Hinton broth (BD 275730), and then further
diluted by a factor of five. An amount of 5 µL of the diluted overnight culture was placed into each well
(excluding the blank wells for media control treatment), resulting in a final inoculum concentration of
approximately 5.0 × 105 CFU/mL.

Each row of a 96-well flat-bottomed microplate (Thermo Scientific™ 243656) was considered one
experimental replicate. For each replicate, 5 µL of each alkaloid dilution was added to wells 1–8 in
descending order of concentration, ranging from 500 to 3.90625 µg/mL. Each replicate also contained a
well with 5 µL diluted tetracycline (Fisher BioReagents BP912-100), a well with 5 µL molecular-grade
ethanol (negative solvent control), a growth control, and a blank control with only media. Due to the
difficulties of diluting solid tetracycline in molecular-grade ethanol, we had to optimize the solution
and dilute at 1300 µg/mL for a final well concentration of 32.5 µg/mL. This concentration is comparable
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to the maximum concentration of our synthetic alkaloid. Six replicates of the synthetic alkaloid across
three plates and triplicates of the raw venom across three plates were used for each bacterial strain.

Each plate was placed into an ELx808i™ Absorbance Microplate Reader (BioTek Instruments,
Winooski, VT, USA) and incubated at 37 ◦C for 24 h, with a plate shake and an absorbance reading
at 600 nm (OD600) every 5 min for a 24 h period [51]. A total of 288 OD600 reads were taken for each
well over 24 h, for a total of 2304 OD reads per treatment. OD600 reads from the unaltered growth
treatment in column 11 of each trial were analyzed for the time at which cultures reached mid-log
phase using the R [52] package Growthcurver v3.6.0 [53]. The OD600 for each bacterial strain per plate
was determined for each treatment under their corresponding times at mid-log phase. Each bacterial
strain was tested for significant differences in OD600 among treatments using a Kruskal–Wallis test.
Dunn post hoc comparisons were used to determine the MIC of the synthetic alkaloid (the lowest
concentration with a significant difference in OD600 from the negative solvent control, EtOH).

4.7. Insecticidal Function of Raw Venom

To measure insecticidal function, we performed toxicity assays on Reticulitermes flavipes termites
(see [40]) using raw venom from living ants. We sampled equally from two Megalomyrmex peetersi
colonies (RMMA180623-18 and CRC180623-09) and five Reticulitermes flavipes termite colonies,
creating a total of 10 replicates. For each ant–termite replicate, five ants and five termites were
used. Before manipulation, the ants were anesthetized in petri dishes on ice. Then the ants were held
by the petiole with forceps while the tip of the gaster was stroked with a microcapillary until the
sting was everted and a droplet of venom formed. Droplets were applied to the termites on the head
between the frons and mouthparts. This method mimics how Megalomyrmex ants apply their venom
to prey items since they cannot inject their sting. We controlled for handling by holding the termites
and touching their head with an empty microcapillary. A single ant was used for the application of
venom on one termite. After being “stung,” the termites were placed inside 5 cm wide petri dishes
lined with dry filter paper, which were then placed in a larger chamber lined with wet paper towel to
prevent death by desiccation. Initial termite reactions were observed for 5 min, followed by a check
after 1, 2, 4, and 6 h. The plates were tipped to the side upon every check. Standing individuals were
recorded as “alive” if seemingly unaffected or “intoxicated” if moving erratically or frozen in place.
Upside-down individuals were recorded as “incapacitated” if still moving or “dead” if not moving.
Mortality was plotted and statistical significance assessed with pairwise log-rank comparisons from
the R [52] package survminer v0.4.8 [54].

4.8. LD50 Assays of Synthetic Alkaloid

To measure alkaloid toxicity, we used synthesized alkaloid in assays similar to insecticidal assays
with raw venom, but only measured mortality. We sampled equally from five colonies of Reticulitermes
flavipes so that individuals from each colony were exposed to all alkaloid dilutions. An amount 0.5 µL
of each alkaloid dilution was applied to the termites on the head between the clypeus and frons.
For each dilution–termite replicate, five individuals were used. Following alkaloid administration,
the termites were placed inside 5 cm wide petri dishes lined with dry filter paper, which were then
placed in a larger chamber lined with wet paper towel to prevent death by desiccation. Initial termite
reactions were observed for 5 min, followed by a check after 1, 2, 4, and 6 h. The plates were tipped to
the side upon every check. The individuals were recorded as “dead” if upside down and immobile.
Mean weight was measured independently using 20 termites from two colonies. LD50 after 6 h was
calculated from a four-parameter log-logistic function using the R [52] package drc v3.0-1 [55].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/11/679/s1,
Figure S1: Scanning electron micrographs highlighting sculpturing differences between workers of Megalomyrmex
peetersi sp. n. (Colombia) and Megalomyrmex wallacei (Brazil).

http://www.mdpi.com/2072-6651/12/11/679/s1
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