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The interrelationships within ant subfamilies remain elusive, despite the recent establishment of the phylogeny of
the major ant lineages. The tribe Myrmicini belongs to the subfamily Myrmicinae, and groups morphologically
unspecialized genera. Previous research has struggled with defining Myrmicini, leading to considerable taxonomic
instability. Earlier molecular phylogenetic studies have suggested the nonmonophyly of Myrmicini, but were based
on limited taxon sampling. We investigated the composition of Myrmicini with phylogenetic analyses of an enlarged
set of taxa, using DNA sequences of eight gene fragments taken from 37 representatives of six of the seven genera
(Eutetramorium, Huberia, Hylomyrma, Manica, Myrmica, and Pogonomyrmex), and eight outgroups. Our results
demonstrate the invalidity of Myrmicini as currently defined. We recovered sister-group relationships between the
genera Myrmica and Manica, and between Pogonomyrmex and Hylomyrma. This study illustrates that to
understand the phylogeny of over 6000 myrmicine species, comprehensive taxon sampling and DNA sequencing are
an absolute requisite.
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INTRODUCTION (2006) succeeded in defining the early branches of the
ant tree of life, and Brady et al. (2006) and Moreau
et al. (2006) made significant progress in resolving the
interrelationships among the subfamilies. The recent
discovery of the sister group to all extant ants, Mar-
tialis heureka (Rabeling etal., 2008), further
enhanced our understanding of early ant evolution.
In contrast to the emerging consensus on the
overall relationships among ants, the classification
within subfamilies remains controversial. The largest
of the 21 subfamilies, Myrmicinae, comprises 149
extant genera (Agosti & Johnson, 2005), classified
into 25 morphologically defined tribes (Bolton, 2003;
Fernandez, 2004). An analysis of the interrelation-
ships of Myrmicinae is only available as part of the
phylogenies of ants. Thus, the data in Brady et al.
(2006) included 19 tribes representing 42 myrmicine
*Corresponding author. Current address: Zoological genera, and in Morea.u et al. (2006) 17 tribes covering
Tnstitute, Christian-Albrechts University Kiel, Am 52 genera. Both studies agreed on the nonmonophyly
Botanischen Garten 1-9, 24118 Kiel, Germany. E-mail: of several tribes, including Dacetini, Stenammini,
gunther.jansen@helsinki.fi Solenopsidini, and Myrmicini.

Ants (Formicidae) numerically dominate terrestrial
ecosystems from the arctic regions to the tropics.
Formicidae includes about 12 000 described ant
species grouped into 21 subfamilies (Bolton, 2003;
Saux, Fisher & Spicer, 2004; Bolton et al., 2006;
Rabeling, Brown & Verhaag, 2008). The interrelation-
ships among ants have long been elusive, as demon-
strated by the thorough revisions in each general
taxonomic work on Formicidae (Bolton, 1995, 2003;
Bolton et al., 2006). Moreover, cladistic analyses of
morphological data have proven insufficient to resolve
the phylogeny of ants (Baroni Urbani, Bolton & Ward,
1992). Only recently, Ouellette, Fisher & Girman
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Table 1. Summary of the species numbers, distribution, basic ecology, and most important taxonomic work for the seven
genera of the tribe Myrmicini, presented in decreasing order according to species number

Genus Species  Distribution

Ecology

Taxonomic notes

~200 Holarctic,
mountains of

Southeast Asia

Myrmica

~70 USA, Mexico,

South America

Pogonomyrmex

From Mexico to
South Brazil,
Paraguay, and
Argentina

Four in North
America, one
in Europe, and
one in Japan

Hylomyrma 13

Manica 6

Eutetramorium 2 Madagascar

Huberia 2 New Zealand

Secostruma 1 Malaysia

Common; cold

adapted; nests in

diverse habitats;
omnivorous

Mostly temperate;
nests in arid
regions; seed
harvesters

In leaf litter

Cool habitats;
mostly at higher
altitudes

Forests

Reduced eyes and
ventrally placed
sting suggest
hypogeic life

Generic definition revised by Bolton (1988b);
Palaearctic species well understood, divided
into species groups (Radchenko, 1995a,b,c,d;
Radchenko & Elmes, 2001, 2003); Seifert, 1988,
2003; Nearctic taxonomy outdated and
problematic (Weber, 1947, 1948, 1950;
Creighton, 1950); two new Nearctic species
groups and four new species (Francoeur, 2007)

Ephebomyrmex genus (Creighton, 1950; Wheeler
& Wheeler, 1985; Holldobler & Wilson, 1990);
Former subgenera Ephebomyrmex,
Forelomyrmex synonymized with
Pogonomyrmex (Lattke, 1990); Ephebomyrmex
paraphyletic (Parker & Rissing, 2002);
monophyletic North American species
complexes: barbatus, occidentalis and
californicus (Taber, 1990; Parker & Rissing,
2002); keys, Chile (Snelling & Hunt, 1975),
Argentina (Kusnezov, 1978), Mexico (MacKay
et al., 1985), Northern South America
(Fernandez & Palacio, 1997)

Raised to genus (Brown, 1953); Lundella
transferred from Tetramoriini and
synonymized with Hylomyrma (Brown, 1953);
revised to 12 species (Kempf, 1973)

Synonymized with Myrmica (Roger, 1863);
subgenus of Myrmica (Emery, 1921); raised to
genus and placed in Myrmicini (Weber, 1947);
sister group of Myrmica (Astruc et al., 2004;
Brady et al., 2006)

Tetramoriini (Ashmead, 1905); Myrmecinini
(Emery, 1912, 1914); Tetramoriini
(Emery, 1915)

Stenammini (Ashmead, 1905); Solenopsidini
(Emery, 1914, 1922; Forel, 1917; Wheeler,
1922); Incertae cedis in Myrmicinae
(Ettershank, 1966); Myrmicini (Holldobler &
Wilson, 1990)

Tetramoriini (Bolton, 1988a); Lack of
characteristic Tetramoriini sting results in
transfer to Myrmicini (Bolton, 1994)

The morphological definition of the tribe Myrmicini
has been problematic because of a lack of apomorphies.
Since Emery (1921) revised the classification of ants,
Myrmicini has consisted of Myrmica, Pogonomyrmex,
and a changing array of other genera. Several addi-
tional genera have been transferred to the tribe and
removed again later. The tribe is usually recognized by
the presence of metatibial spurs (rarely absent) and a
characteristic wing venation in winged individuals.

Currently, Myrmicini is formally defined by several
morphological characters, many of which are not
unique to Myrmicini, and includes the genera Eutet-
ramorium, Huberia, Hylomyrma, Myrmica, Manica,
Pogonomyrmex, and Secostruma (Bolton, 2003). Infor-
mation on the distribution, ecology, and taxonomy of
each Myrmicini genus is summarized in Table 1.
Three hypotheses have been formulated on the
composition of Myrmicini: one based on morphological

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160, 482-495



484 G. JANSEN and R. SAVOLAINEN

analysis (above) and two on molecular data. Molecu-
lar data suggested that Myrmicini as defined morpho-
logically may not be monophyletic (Brady et al., 2006;
Moreau et al., 2006). These studies included, respec-
tively, four and three of the seven genera in Myrmi-
cini, and sampled one or two species of each genus. In
Brady et al. (2006), Eutetramorium did not form a
monophyletic group with Myrmica, Manica, and
Pogonomyrmex. In Moreau et al. (2006), Pogono-
myrmex, Eutetramorium, and Myrmica clustered in
separate clades.

To test the monophyly of Mpyrmicini, and to
re-evaluate the conflicting ideas regarding the rela-
tionships among Myrmica, Pogonomyrmex, and Eutet-
ramorium, we reconstructed the phylogenetic
relationships among the members of Myrmicini using
DNA sequence data, obtained from multiple genes.
We included in our study all genera of Myrmicini,
except Secostruma (which consists of one rare species
from Malaysia), and represented each genus by mul-
tiple species. To investigate the position of Myrmicini
within Myrmicinae, we complemented our data with
published DNA sequences of other myrmicine genera
(Brady et al., 2006; Moreau et al., 2006).

MATERIAL AND METHODS
ANT SAMPLES

We collected at least ten individuals from colonies of
Manica, Myrmica, and Pogonomyrmex in Colorado,
USA (1998), Japan and Taiwan (2002), and Quebec,
Canada (2005) (Table 2). The ants were placed in
absolute ethanol and stored at 4 °C. We also received
additional specimens from colleagues. In total, 45
taxa were included, of which two Eutetramorium,
three Huberia (two representatives of Hu. brounii),
two Hylomyrma, two Manica, 19 Myrmica, and nine
Pogonomyrmex (with two samples of P. occidentalis).
Additionally, six myrmicine and two formicine out-
groups were included. We took two representatives for
each myrmicine outgroup genus to control for possible
sample mix-ups and sequencing errors. In our study
all Myrmicini genera were thus represented by
several samples, except for Secostruma, for which one
species, S. lethifera Bolton, has only been found rarely
(Bolton, 1988a), and for which material was unavail-
able. A list of taxa with collection information and
GenBank accession numbers is provided in Table 2.
Vouchers were deposited in the collection of R. Savol-
ainen, at the Department of Biological and Environ-
mental Sciences, at the University of Helsinki.

MOLECULAR METHODS

We crushed the ants in liquid nitrogen and added
Proteinase K (Fermentas, St. Leon-Roth, Germany)

for overnight cell digestion at 60 °C. We extracted
genomic DNA using the Nucleo Spin Tissue kit
(Macherey—Nagel). We amplified eight gene frag-
ments (using the primers in Table 3): mitochondrial
cytochrome oxidase subunit I (COI); nuclear ribosomal
genes 18S and 28S (extension regions 1 and 2); and
nuclear protein-coding genes abdominal A (AbdA),
arginine kinase (ArgK, exon I, intron and exon II), the
F1 copy of elongation factor-1o. (EF-1c), and long-
wavelength rhodopsine (LwRh). GenBank accession
numbers can be found in Table 2.

The 20-uL mixture for PCR amplification included
the following final concentrations of reagents:
0.75x buffer, 0.09 mM deoxyribonucleotide triphos-
phates (ANTPs), 3.1 mM MgCls, 0.5 U Taq polymerase
(Fermentas), 0.5 uM of each primer, and 0.8-1.5 uL of
DNA. We amplified DNA through 30 cycles of 30 s at
94 °C, 45s at 49-58 °C (depending on the primers
used), and 2 min at 72 °C. Subsequently, we purified
the PCR products using ExoSAP-IT (USB Corpora-
tion). In the sequencing reaction, we used the BigDye
Terminator v1.1 sequencing kit (Applied Biosystems).
We purified the cycle sequencing reactions with the
Montage SEQgs sequencing reaction clean-up kit (Mil-
lipore), and sequenced both strands on a MegaBace
1000 DNA analysis system (GE Healthcare). We com-
piled and edited the sequences with Sequencher 4.5
(Gene Codes).

PHYLOGENETIC ANALYSES

We aligned the sequences for each gene fragment
using Mafft 6.606b (Katoh et al., 2005). We used the
iterative refinement method with local pairwise align-
ment information (L-INS-i), and with the maximum
number of iterations set at 1000. We checked and
edited the alignments, and concatenated all gene
fragments in MacClade 4 (Maddison & Maddison,
2000). The final alignment is available in TreeBase
(study S2372; matrix M4504). The data included 37
ingroup taxa, and Aphaenogaster rudis Enzman, Aph-
aenogaster senilis Mayr, Crematogaster auberti
Emery, Crematogaster scutellaris (Olivier), Tetramo-
rium caespitum L., Tetramorium impurum (Foerster)
(of Mpyrmicinae), Lasius alienus (Foerster), and
Formica fusca L. (of Formicinae) as out-group taxa.

To increase our taxon sampling and infer the posi-
tion of Myrmicini in the subfamily Myrmicinae, we
supplemented our data with sequences of the subfam-
ily Myrmicinae from two recent studies on ant phy-
logenetics (Brady et al., 2006; Moreau et al., 2006).
We retrieved the two respective alignments (matrices
M2958 and M2724) from Treebase, combined them,
and excluded all taxa not belonging to Myrmicinae.
Finally, we combined that data with our own
sequences of Myrmicini. Because the data from the
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Table 3. Oligonucleotide primers used in this study (JS data)

Gene Primer 5’-3’ sequence Reference
18S 18SA AGCAGCCGCGGTAATACCAG B. Sullender, unpublished (through T.R. Schultz)
18SB ATGCTTTCGCTTCTGGTCCGT B. Sullender, unpublished (through T.R. Schultz)
28SD1 28SA CCCCCTGAATTTAAGCATAT Schmitz & Moritz, 1994
28SC CGGTTTCACGTACTCTTGAA Schmitz & Moritz, 1994
28SD2 28SF2 AGAGAGAGTTCAAGAGTACGTG Belshaw & Quicke, 1997
28S3DR TTGGTCCGTGTTTCAAGACGGG Belshaw & Quicke, 1997
AbdA AA1181F ACCGGCGATATGAGTACGAAATT De Menten et al., 2003, modified by Ward &
Downie, 2005
AA1881R GGTTGTTGGCAGGATGTCAAAGG De Menten et al., 2003, modified by Ward &
Downie, 2005
AA1182F CCGGCGATATGAGTACGAAATTC De Menten et al., 2003, modified by Ward &
Downie, 2005
AA1824R TAGAAYTGTGCCGCCGCTGCCAT De Menten et al., 2003, modified by Ward &
Downie, 2005
ArgK E1 AK1F2 TGGTTGAYGCYGCYGTTYTGGA P.S. Ward, unpublished
AK461R GTGCTRGAYACYTTCTCYTCCAT P.S. Ward, unpublished
AKA4F2 GTTGAYGCYGCYGTTYTGGAYAA P.S. Ward, unpublished
AK392R TCCAARGAGCGRCCGCATC P.S. Ward, unpublished
ArgK E2 AK346EF AGGGTGARTACATCGTRTCHACT P.S. Ward, unpublished
AKT720ER ACCTGYCCRAGRTCACCRCCCAT P.S. Ward, unpublished
cor LCO GGTCAAACAAATCATAAAGATATTGG Folmer et al., 1994
HCO TAAACTTCAGGGTGACCAAAAAATCA Folmer et al., 1994
Ron GGATCACCTGATATATAGCATTCCC Simon et al., 1994
Jerry CAACATTTATTTTGATTTTTTGG Simon et al., 1994
Pat TCCAATGCACTAATCTGCCATATTA Simon et al., 1994
EF-1a TRS4F GCGCCKGCGGCTCTCACCACCGAGG Brady et al., 2006
TRS9.1b GGAAGGCCTCGACGCACATCGG Brady et al., 2006
TRS10R ACGGCSACKGTTTGWCKCATGTC T.R. Schultz, unpublished
LwRh LR143F GACAAAGTKCCACCRGARATGCT Ward & Downie, 2005
LR182F CACTGGTATCARTTCGCACCSAT P.S. Ward, unpublished
LR639R YTTACCGRTTCCATCCRAACA Ward & Downie, 2005
LR672R CCRCAMGCWGTCATGTTRCCTTC P.S. Ward, unpublished

For ArgK exon 1, the initial amplification was performed using the first two primers, and the reamplification was
performed with the last two.

above two studies had a different set of taxa and gene
fragments than our study, we could only include those
sequences that overlapped with ours. The final align-
ment thus included sequences stemming from 28SD1,
28SD2, AbdA, and LwRh. We deleted ambiguous
regions, because of alignment uncertainty in introns
and in regions with secondary structure (28SD2) out-
weighed the phylogenetic signal, resulting in a final
alignment of 1508 sites for 119 taxa. We will refer in
the methods and analyses to our data as JS (for
Jansen and Savolainen), to separate it from the com-
bined data (ALL).

For JS, we analysed the genes separately and con-
catenated. For ALL, we only analysed the concat-
enated data. For each gene region of JS, we chose the
best-fit nuclear substitution model (Table 4) according
to the Akaike information criterion in Modeltest 3.7

(Posada & Crandall, 1998). We then analysed the
data using maximum likelihood (ML) and Bayesian
phylogenetic inference (BI).

We used RaxML 7.0.4 (Stamatakis, 2006a) for the
ML analyses. We inferred the gene topologies using
the GTRCAT approximation with 1000 rapid boot-
straps. The GTRCAT approximation is a faster and
more efficient way to accommodate rate heterogeneity
in phylogenetic analyses than the conventional T’
model (Stamatakis, 2006b). For each site in an align-
ment the T model calculates the probability of evolv-
ing at any rate in a given distribution (the precise
shape of the distribution is itself controlled by the
empirically determined o shape parameter). In con-
trast, the CAT-approximation maps each individual
rate into one of a fixed number of rate categories (by
default 50 in RaxML), and calculates only one prob-
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Table 4. Gene fragments, their lengths in base pairs (bp), number of variable sites, and mean GC content per gene

fragment in percentages (%)

Gene fragment Length (bp) Variable sites (%) Mean GC (%) Model

(6{0)4 1377 49.3 29.4 GTR+T +1
188 373 1.1 49.9 GTR
28SD1 349 7.2 55.9 GTR +1
28SD2 543 39.9 68.7 GTR+T+1
ArgK (coding) 636 31.8 54.7 GTR+T +1
ArgK intron 312 59.2 20.8 GTR +1
AbdA 540 21.1 62.9 HKY+T +1
LwRh (coding) 405 33.1 51.6 GTR+T
LwRh intron 102 71.6 47.8 K81+T
EF-1o 336 17.6 60.6 GTR+T
Concatenated JS 4973 35.0 48.1 GTR+T +1
Concatenated ALL 1580 40.6 59.8 GTR+T+1

Characteristics for the genes are listed separately, and are concatenated for JS data and concatenated for ALL data.
The formicine outgroups Formica fusca and Lasius alienus were excluded from these statistics. The last column lists
the best-fit substitution models as inferred using the Akaike information criterion in Modeltest 3.7.

ability per site. This results in dramatic performance
increases, and often gives better likelihood values
than ML analyses wusing a normal T model
(Stamatakis, 2006b). Compared with GTRGAMMA,
GTRCAT therefore allows for a more thorough analy-
sis within any given period of time. We then con-
ducted a complete ML search using the GTRCAT
approximation, but switched to GTRGAMMA (a con-
ventional GTR + T model) to evaluate the final tree
topology (this yields stable likelihood values). For the
concatenated JS data, we applied three partitioning
strategies: (1) unpartitioned data with GTR+T +1;
(2) partitioned data to gene regions using GTRCAT
for each region (for LwRh and ArgK we gave a sepa-
rate partition to the intron and to the coding region,
making ten partitions in total); (3) partitioned data to
gene regions, as in strategy 2, and codon position,
combining for each protein coding gene (AbdA, ArgK,
COl, EF-1a, and LwRh) the first two positions in one
partition, and the third position in another (in total
15 partitions). We applied a GTRCAT approximation
to each partition, and performed 1000 rapid boot-
straps, as well as a full ML search, as described
above. We similarly analysed the ALL data, using
partitioning strategy 2.

We wused Bayesian phylogenetic inference in
MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003) for
the two concatenated datasets (ALL and JS). For the
BI analyses of JS we used the three partitioning
strategies defined above, applying the models of
Table 4 to each partition. For ALL, we used partition
strategy 2. All partition parameters were unlinked,
and the standard flat Dirichlet priors were used.
However, we kept the topology linked across parti-

tions, with a uniform prior. For branch lengths we
used an unconstrained Dirichlet prior (branch lengths
were unlinked across partitions). We ran all BI analy-
ses for 10 million generations. For most partitioned
analyses we used the Murska supercluster of the CSC
— IT Center for Science Ltd. For the remaining BI
analyses, we used a Mac 5, and for the RaxML analy-
ses, we used a Dell Precision M6300 running
Kubuntu Linux (program compiled from source using
gee 4.2). We assessed burn-in by plotting likelihoods
vs. generations in Tracer 1.4 (Rambaut & Drummond,
2007). We discarded all data obtained before likeli-
hood values reached a plateau. Burn-in values varied
between one million and two million generations. The
burn-in numbers and statistics of consensus tree cal-
culations are shown in Table 5.

RESULTS
SEQUENCE CHARACTERISTICS

We successfully sequenced all seven gene fragments
for most of the 45 taxa in our study. Four sequences
were missing for AbdA (A. rudis, C. auberti, Huberia
striata Forel, T. caespitum), five were missing for exon
2 of ArgK [Eutetramorium mocquerysi Emery,
Hylomyrma dentiloba (Santchi), Huberia brounii
Forel, Myrmica angulata Radchenko, Zhou & Elmes,
and Pogonomyrmex huachucanus Wheeler], and three
COI sequences were incomplete [E. mocquerysi,
Hylomyrma balzani (Emery), and M. angulata]. The
concatenated JS data comprised 4973 aligned posi-
tions; the ALL data comprised 1580 aligned positions.
The 18S and 28SD1 fragments were almost invari-
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Table 5. Data sets (JS and ALL), partition strategies 1-3, and number of partitions in each in parentheses, burn-in and

consensus tree numbers in the Bayesian analyses

Burn-in (x1000 Trees in
Data Partitioning strategy generations) consensus
JS 1 GTR+T+1 (D) 1000 18 002
2 Genes (10) 1000 18 002
3 Genes + codons (15) 1500 17 002
ALL Genes (4) 2000 16 002

Each Bayesian run had ten million generations.

able (<10% variable sites), whereas COI and the
introns of ArgK and LwRh were rather variable
(> 50%). Table 4 summarizes the length, variability,
and GC content of each fragment of the concatenated
JS and ALL data.

PHYLOGENETIC RESULTS

The Bayesian and ML analyses of the concatenated
JS data showed that Myrmicini is polyphyletic
(Fig. 1). The six genera of Myrmicini included in this
study formed three separate, well-supported clades.
We found sister-group relationships between Myrmica
and Manica (posterior probability, PP = 100%; boot-
strap support, BS=100%), Pogonomyrmex and
Hylomyrma (PP =100; BS =100), and Huberia and
Eutetramorium (PP =100; BS =95). The last clade
clustered with Crematogaster of the tribe Cremato-
gastrini (PP = 100; BS = 92), and these clustered with
the clade Aphaenogaster of the tribe Pheidolini and
Tetramorium of the tribe Tetramoriini (PP = 100;
BS =100).

In the Bayesian analyses, the topology was insen-
sitive to parametrizations, although convergence was
difficult to obtain for partitioning strategy 3 (the data
were divided into genes and codons, see Table 5).
Nevertheless, the standard deviation of split frequen-
cies was lower than 0.01 in all other analyses, indi-
cating convergence was reached. ML bootstrap
percentages were generally lower than BI probabili-
ties, but the ML topology was identical to the one
obtained with BI.

The analyses further found all genera to be mono-
phyletic, with 100% posterior probability and boot-
strap support. Within Myrmica we found support for
the monophyly of several morphologically defined
species groups: ritae (PP =100; BS=100), rubra
(PP =100; BS =100), scabrinodis (PP =100;
BS =100), and lobicornis (PP =100; BS =100). The
Nearctic species groups were not monophyletic, as
Myrmica incompleta Provancher did not cluster with
the Myrmica nearctica Weber—Myrmica americana
Weber clade.

Within Pogonomyrmex, we found support for the
californicus (PP=100; BS=85) and barbatus
(PP =100; BS =100) complexes. Because the analysis
only included two representatives of Pogonomyrmex
occidentalis (Cresson), we could not evaluate the
monophyly of the occidentalis complex. The three
representatives of Ephebomyrmex (Pogonomyrmex
imberciculus Wheeler, Pogonomyrmex huachucanus
Wheeler, and Pogonomyrmex pima Wheeler) were
paraphyletic.

In the separate analyses of the genes (trees not
shown), both BI and ML analyses failed to recover
any structure for 18S. All other gene trees (not
shown) supported the monophyly of Pogonomyrmex
(PP and BS =91-100) and Huberia (PP and BS = 66—
100). Most analyses also supported the monophyly of
Myrmica (PP and BS =64-96, except for ArgK and
EF-10), Eutetramorium (PP and BS = 98-100, except
for 28SD1 and LwRh), Hylomyrma (PP and BS = 78—
100, except for EF-1ca and 28SD1), and Manica (PP
and BS =66-100, except for COI). The sister-group
relationships between Hylomyrma and Pogono-
myrmex (PP and BS = 70-100, not present in COI and
EF-10), and between Myrmica and Manica (PP and
BS =66-100, unresolved in COI), were found in most
gene trees. Other, more basal relationships among
genera were unresolved in the gene trees.

The ML and BI analyses of the ALL data only
supported the monophyly of some genera, including
each genus of Myrmicini and some small clades
(Fig. 2). Only the sister-group relationships between
Myrmica and Manica (PP =99; BS = 99), and between
Pogonomyrmex and Hylomyrma (PP =99; BS=99),
received high support; other interrelationships among
the members of Myrmicini and among the other myr-
micine genera were unresolved. The Huberia +
Eutetramorium clade received lower support in ALL
compared with the JS analyses.

DISCUSSION

The morphological definition of Myrmicini currently
places seven genera in the tribe (Bolton, 2003).
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Figure 1. Majority-rule consensus tree (18 002 Bayesian trees, with a burn-in of one million generations) of 37 Myrmicini
in-group taxa, and six members of Myrmicinae and two Formicinae as out-group taxa (JS data matrix, see Material and
methods for details). This topology was obtained with all partition strategies (1-3, see Material and methods for details).
Nodal support values were similar across analyses; the values shown were obtained from partitioning data according to
gene regions (strategy 2). On branches, solid circles (®) indicate that the posterior probability = 100%; open circles (O)
indicate that the posterior probability > 85%. Numbers above branches represent maximum-likelihood bootstrap support
(1000 replicates). On the right, genera of Myrmicini and species groups of Myrmica and Pogonomyrmex are listed;

Nearctic species groups are not known.

Recent molecular studies suggested, however, that
the tribe may not be monophyletic (Brady et al., 2006;
Moreau et al., 2006), although they differed on the
generic composition of the tribe. Contrary to these
molecular studies, we had representatives of all
genera of Myrmicini, except for Secostruma. We
obtained comprehensive DNA sequence data for
almost all taxa, which yielded a robust and well-
supported phylogenetic hypothesis. Our results
clearly demonstrated that the tribe Myrmicini as cur-

rently defined is not monophyletic. Rather, we found
that Myrmicini is a compound of three unrelated
lineages. Unfortunately, the analysis of the Myrmici-
nae yielded a basal polytomy, and therefore we could
not assess the placement of these three clades within
the subfamily.

Pogonomyrmex, Hylomyrma, Myrmica, and Manica
have always been placed in the tribe Myrmicini,
based on their presumably unspecialized morphology
(Wheeler, 1922). They resemble each other in having
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Figure 2. Majority-rule consensus tree (16 002 Bayesian trees, with a burn-in of two million generations) of 111
Myrmicinae in-group taxa and Polyergus, Formica, and Lasius (Formicinae) as out-group taxa (ALL data matrix, see
Material and methods for details). On branches, full circles (@) indicate that the posterior probability = 100%; open circles
(O) indicate that the posterior probability > 85%. Numbers above branches represent maximum-likelihood bootstrap
support (1000 replicates). The genera of Myrmicini are indicated on the right.
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a complex metasternum, a nodiform petiole, and the
absence of a promesonotal suture (Bolton, 2003).
Brady et al. (2006) also recovered a close relationship
between Pogonomyrmex, Myrmica, and Manica.
However, that clade received low bootstrap support
(61% in the parsimony analysis; 55% in the ML
analysis), and was not present in their ML optimiza-
tions of alternative rootings. Moreau et al. (2006) pre-
sented a tree where Pogonomyrmex was unrelated to
Myrmica. Our results suggest that Myrmica and
Manica are unrelated to Pogonomyrmex and
Hylomyrma. However, the inclusion of more myrmi-
cine and formicine outgroups is needed to resolve the
relationships of these two clades, because alternative
rooting could make them monophyletic.

Myrmica and Manica are biologically similar, and
share a number of morphological characters. Manica
differs from Mpyrmica, however, in the absence of
propodeal spines (although a few Myrmica also lack
spines), a deeper mesoepinotal suture, mandibles
with smaller and more numerous teeth, and males
with worker-like mandibles and distinct genitalia
(Weber, 1947; Creighton, 1950). Our results agree
with Astruc et al. (2004) and Brady et al. (2006), who
previously recovered Myrmica and Manica as sister
groups.

The sister-group relationship between Pogono-
myrmex and Hylomyrma in our tree agreed with
previous studies (Bolton, 2003, and references
therein). Hylomyrma closely resembles Pogono-
myrmex, especially the species of the former subgenus
Ephebomyrmex, in also having short frontal carinae, a
lack of transverse sutures on the dorsum of the
thorax, armed propodea, pedunculate petioles, and
pectinate spurs (Kempf, 1973). But, Hylomyrma
differs from Pogonomyrmex in mandible shape, struc-
ture of clypeus, metasternal lobes, and petiole shape
(Kempf, 1960).

For Pogonomyrmex, the species of the californicus,
barbatus, and occidentalis species complexes included
in this study all formed monophyletic groups. The
analyses also supported the basal position of Ephe-
bomyrmex. Taber (1990) found a sister-group relation-
ship between the californicus and occidentalis
complexes. In contrast, we discovered a sister-group
relationship between the californicus and barbatus
complexes, although only with medium support.
Lattke (1990) synonymized Ephebomyrmex and Fore-
lomyrmex with Pogonomyrmex, although others con-
sidered Ephebomyrmex to be a subgenus of
Pogonomyrmex (Kempf, 1972; Snelling, 1982; MacKay
et al., 1985; Taber, 1998) or even a genus (Creighton,
1950; Wheeler & Wheeler, 1985; Holldobler & Wilson,
1990). In their molecular analysis of social parasites
in Pogonomyrmex, Parker & Rissing (2002) found
Ephebomyrmex to be paraphyletic. In our tree,

Ephebomyrmex was paraphyletic but basal within
Pogonomyrmex.

Finally, Huberia and Eutetramorium have been dif-
ficult to classify. Both were only recently placed in
Myrmicini, although they have a small metasternal
process instead of the large, conspicuous one found in
the other genera of Myrmicini (Bolton, 2003). Huberia
may resemble Myrmica in general habitus, but differs
from all other Myrmicini genera (sensu Bolton, 2003)
in having an 1l-jointed antenna in females, and a
forewing with a single small cubital cell (Forel, 1893).
Eutetramorium was inferred to be unrelated to
Myrmica, Pogonomyrmex, and Manica (Brady et al.,
2006; Moreau et al., 2006, Manica absent in latter).
Instead, it clustered with Metapone, the only member
of the tribe Metaponini (Brady et al., 2006), or Colo-
bostruma, a member of Dacetini (Moreau et al., 2006).
Neither study aimed to resolve the relationships
within Myrmicinae, and therefore taxon sampling
was too limited to obtain good statistical support for
most clades. Thus, the positions of Eutetramorium
and Huberia relative to the other Myrmicinae remain
disputable.

As illustrated above, the morphological diagnosis of
Myrmicini is difficult and contradicts molecular data.
The commonly used morphological characters to rec-
ognize the genera of Myrmicini are metatibial spurs
on the middle and hind tibia, and the presence of two
closed cubital cells in the forewing (Forel, 1893).
However, these characters are not apomorphic
(Bolton, 2003). For instance, tibial spurs show a
sequence of degradation from long and pectinate to
absent in Myrmica (Bolton, 1988b). The lack of apo-
morphies for Myrmicini and the presumably unspe-
cialized morphology of its genera may thus be
interpreted as a result of convergence rather than
close relatedness. Bolton (1976) also noted such mor-
phological similarities between Myrmica and Tet-
ramorium: morphological resemblances thus form an
unreliable proxy for the interrelationships among
myrmicine genera.

The monophyly of the tribe Myrmicini may also be
questioned from a biogeographical point of view.
Divergence time estimations placed the crown age of
ants at 111-137 Mya (Brady et al., 2006) or 140-—
168 Mya (Moreau et al., 2006). Modern Myrmicinae,
including Myrmica and Pogonomyrmex, are much
younger, and have only been found from FEocene
deposits (Myrmica in Baltic and Saxonian amber of
44.1 Mya, Radchenko, Dlussky & Elmes, 2007;
Pogonomyrmex in Florissant shales of 34.0 Mya, Car-
penter, 1930). However, Madagascar and New
Zealand were separated from other land masses tens
of millions of years before the rise of ants, since the
breakup of Pangaea 180 Mya (Raven & Axelrod,
1974). Genera endemic to remote areas such as New
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Zealand (Huberia) and Madagascar (Eutetramorium)
are thus unlikely to form a monophyletic clade with
the genera found in the Holarctic (Manica and
Myrmica). The current composition of the tribe there-
fore would require a complicated but not impossible
biogeographical scenario to explain its distribution.
However, our data offers an easier explanation: they
are unrelated.

Our analysis only included a few representatives of
the subfamily Myrmicinae, but inferred the interrela-
tionships among the genera of Myrmicini with good
support. However, we could not ascertain the position
of the genera within Myrmicinae. With 6149 described
species (Agosti & Johnson, 2005), Myrmicinae repre-
sents nearly 50% of the total known ant diversity, and
is thus by far the largest, most diverse, and successful
of the ant subfamilies. The higher relationships among
myrmicines are unascertained, except for a few small,
specialized tribes such as Attini, Melissotarsini, and
Myrmicariini (they did not undergo many taxonomic
changes; see Bolton et al. 2006). Most are grouped
based on inclusive characters, and therefore their
monophyly is only a suggestion (Bolton, 2003). Thus, it
is not surprising that molecular data have questioned
the monophyly of several tribes, including Dacetini,
Pheidolini, Solenopsidini, and Stenammini (Brady
et al., 2006; Moreau, 2008). Shattuck (1992) even abol-
ished the use of tribes in the subfamily Dolichoderinae.

We found that the tribe Myrmicini is not monophyl-
etic. The composition of Myrmicini and its relation-
ships to other tribes in the subfamily Myrmicinae can
only be addressed with a comprehensive molecular
phylogeny of the entire subfamily. The insertion of
our data into large published datasets increased
taxon sampling, but reduced sequence length, yield-
ing no resolution. This illustrates that many indepen-
dent molecular markers and dense taxon sampling
are required before robust conclusions can be drawn
about the classification and evolution of this hyperdi-
verse subfamily.
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