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Chemical communication is a fundamental, highly complex component of social insect
societies. Ants in particular employ a remarkable diversity of chemical signals to maintain
social cohesion among nestmates, gain essential resources through coordinated
foraging, and warn of danger. Although the chemicals used can be functionally specific,
they are vulnerable to exploitation by eavesdropping natural enemies (e.g., parasitoids,
predators, parasites) and other associates (e.g., myrmecophiles). Ant nests are nutrient
hotspots due to their collection of resources warranting keen defense systems; yet
the heavily defended hideouts are frequently invaded. Many organisms exploit ant
species, but how they locate hosts—including what host-derived cues are used—is
still poorly understood. Here, we review current knowledge about how ant chemical
communication systems can be exploited by unintended receivers. We take a case
study approach and illustrate the diversity of ant associates and host traits that may
predispose ants to exploitation. We identify knowledge gaps by reviewing host systems
and listing: (1) the types of associates (e.g., fly, wasp, beetle) where eavesdropping is
likely occurring, organized by the host communication system that is being exploited;
(2) the ant parasites that exploit trail pheromones; and (3) the experimentally determined
chemicals (i.e., alarm/defensive pheromones), used by eavesdroppers. At least 25
families of arthropods (10 orders) potentially eavesdrop on ant communication systems
and nearly 20 host ant species are vulnerable to trail parasite ant species. We also
propose future research that will improve our understanding of community assembly by
examining host traits (e.g., latitude, nest characteristics, trail system) that influence their
susceptibility to eavesdropping associates.

Keywords: formicidae, symbionts, parasitoids, fungus-growing ants, fire ants, Azteca, semiochemical,
unintended receivers

EXPLOITATION OF CHEMICAL COMMUNICATION

In nature, natural enemies impose strong selective pressures on animals. These well-documented
interactions drive complex coevolutionary arms races wherein organisms avoid detection by natural
enemies that in turn evolve to overcome their victim’s defenses. As individuals communicate with
conspecifics, they also make information available to natural enemies and other associates that
can be used to their advantage. Indeed, signals are often intercepted by unintended receivers
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who use them to exploit the signaler and ultimately benefit from
accessing this communication system (Zuk and Kolluru, 1998;
Stevens, 2013). This phenomenon, known as eavesdropping, can
occur across sensory modalities in vertebrate and invertebrate
communication networks (Otte, 1974; Stowe et al., 1995; Peake
et al., 2001; Hamel and Cocroft, 2019). Chemical communication
systems in particular, make signalers vulnerable to exploitation
by a wide variety of enemies (e.g., parasitoids, predators,
cleptoparasites, social parasites) and other associates (e.g.,
myrmecophiles). The diffusion of chemical signals, albeit less
reliable than light and sound signals, can reveal the location
of the signaler due to the odor gradients created. Chemical
signals can also be made of molecules with low volatility that
remain in the environment for days. Most studies investigating
eavesdropping by natural enemies, however, have focused on the
exploitation of acoustic and visual signals. Here, we evaluate the
evidence for eavesdropping on chemical signals with the goal
of providing hypotheses for future research that will fill the key
gaps in our understanding of this phenomenon. We focused this
review on ants (Hymenoptera: Formicidae) given that chemical
communication is especially well developed in this insect family,
providing an opportunity to cultivate general principles that
relate to chemical communication and exploitation of chemical
signals more broadly.

Ants are ecologically successful for a variety of reasons,
including their social behavior, division of labor among distinct
castes, and potentially large colony sizes. Ants communicate
with their nestmates and with other organisms using a variety
of mechanical (tactile, vibrations), visual, and chemical cues
(Hölldobler and Wilson, 1990). However, it is clear that the
evolutionary success of ants can be attributed in large part
to their efficient chemical communication systems that enables
large ant colonies to solve complex problems (Gordon and
Mehdiabadi, 1999; Dornhaus et al., 2012). While the average
ant worker has seven different glands, 75 different glands have
so far been described in the Formicidae (Jackson and Morgan,
1993; Billen, 2009) and many of these secretions provide the basis
for chemical communication systems. For example, exocrine
secretions are used in defense and communication signals are
commonly excreted from multiple glands used in synergy,
therefore, the identification of the exact compound that elicits
a behavioral response is challenging. Regardless, the literature
on ant communication generally centers on detection of volatile
emissions, thus we focus on chemical communication as the basis
for this review. To our knowledge, all reports of eavesdropping
in ants have involved chemical compounds, but tactile and
vibrational cues may also be important under certain conditions.
We mainly limit this review to sedentary nest-dwelling species
because they form a tractable and ecologically relevant subset of
the >16,000 known ant species (AntWeb1 [Accessed 9 September
2019.]). However, we also highlight traits shared among many
ant species that are linked with trail pheromone use, defensive
substances, and nestmate recognition. We show that, although
pheromones are often directed toward nestmates (intended
receivers), they can sometimes be detected and used as cues by

1https://www.antweb.org

a diverse array of heterospecifics or non-nestmate conspecifics
(unintended receivers).

Trail Pheromones
Ants conspicuously depend on chemical trails when foraging,
and these odor-guided recruitment messages are often complex
by necessity (reviewed in Morgan, 2009; Czaczkes et al., 2015).
A food-bearing ant returning to the nest typically follows a series
of chemical signposts including the trail pheromone, home-
range markings, nest-marking pheromone, and environmentally
derived visual and olfactory landmarks (Hölldobler and Wilson,
1990; Steck, 2012). Multiple species may use the same chemicals
as the basis for their trail pheromones (e.g., Z,E-α-farnesene, 2,5-
Dimethyl-3-ethylpyrazine), but these are commonly augmented
with colony-specific hydrocarbons (reviewed in Morgan, 2009;
also see Blomquist and Bagnères, 2010). Moreover, blends of
volatile chemicals within trail pheromones can influence different
nestmate recruitment functions (e.g., attraction, repulsion,
guidance) (Robinson et al., 2005). Some chemical trails are
localized and persist for several days (Jackson et al., 2007),
providing long-lasting cues that are detected by resource-seeking
ant associates (Dejean and Beugnon, 1996). These eavesdroppers
subsequently access ant nests or food sources (Table 1; e.g.,
cockroaches, caterpillars, ants) (Moser, 1964; Adams, 1990;
Dejean and Beugnon, 1996; Menzel et al., 2010). Indeed, there are
many examples of eavesdropping on trail pheromones (Table 2),
but the specific chemicals underlying these associations remain
unknown (see Table 3).

Defense Pheromones
Ants release a wide range of volatile chemicals to alert
nestmates of impending threats (reviewed in Parry and Morgan,
1979; Attygalle and Morgan, 1984; Jackson and Morgan,
1993; Morgan, 2008). Behavioral responses to these volatiles
include increased movement, gaped mandibles, sting extrusion,
trail laying, and aggressive postures (Parry and Morgan,
1979). Alarm pheromones are most often produced by the
mandibular, poison, or Dufour’s glands (Ali and Morgan, 1990),
and are frequently used synergistically. Chemicals found in
alarm pheromones include straight-chain and cyclic ketones,
nitrogenated compounds, and formic acid (Maschwitz et al.,
2008; Morgan, 2008; Vander Meer et al., 2010). The volatility
of alarm pheromones makes them reliable long-range indicators
of host presence, but also makes them spatiotemporally limited.
Regardless, many parasitoids and predators of ants eavesdrop on
alarm pheromones (Table 3) (Feener et al., 1996; Morrison and
King, 2004; Witte et al., 2010).

Recognition Pheromones
Nestmate recognition in ants is primarily mediated via “signature
mixtures” of branched and unsaturated cuticular hydrocarbons
(CHCs) (Wyatt, 2010; Martin and Drijfhout, 2009; Leonhardt
et al., 2016; Menzel et al., 2017). These pheromones are distinct
from linear compounds with higher melting points, which
function mainly to prevent insect desiccation (Howard and
Blomquist, 2005; Martin and Drijfhout, 2009; Chung and Carroll,
2015). CHC signals are central to the social organization of
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TABLE 1 | Demonstrated and putative chemical eavesdropping enemies and associates of the ants.

Individuals are categorized by biological lifestyle (left side) and communication system (top) being exploited. Brackets refer to the host life stage or caste (e.g., queen,
worker, brood). Where the biological lifestyle is unknown, ant associates are categorized as myrmecophiles. References organized by numbers and separated by either
a comma, to indicate the paper is referring to species from different families, or by a semicolon when the paper cited is referring to a new type (e.g., fly, ant, etc.). [1]
Hertel and Colli, 1998, [2] Pérez-Lachaud et al., 2017, [3] Staverløkk and Ødegaard, 2016, [4] Durán and van Achterberg, 2011, [5] Mathis and Philpott, 2012, [6] Sharma
and Fadamiro, 2013, [7] Witte et al., 2010, [8] Uribe et al., 2016, [9] Fernández-Marín et al., 2006, [10] Brown et al., 2017, [11] Wing, 1983, [12] Allan et al., 1996, [13]
Rettenmeyer et al., 2011, [14] Komatsu, 2016, [15] Akino, 2002, [16] Akre and Rettenmeyer, 1968, [17] Cammaerts et al., 1990, [18] Cazier and Mortenson, 1965, [19]
Dejean and Beugnon, 1996, [20] Akre et al., 1988, [21] Geiselhardt et al., 2007, [22] Schönrogge et al., 2008, [23] Mello-Leitão, 1923, [24] Akre et al., 1973, [25] Dodd,
1912, [26] Erthal and Tonhasca, 2001, [27] Lenoir et al., 2012, [28] Bhatkar, 1982, [29] Henderson and Akre, 1986, [30] Hölldobler and Kwapich, 2017, [31] Maschwitz
et al., 1988, [32] Jackson et al., 2008, [33] Powell et al., 2014, [34] Silveira-Guido et al., 1973, [35] D’Ettorre and Heinze, 2001, [36] Henderson and Jeanne, 1990, [37]
Henning, 1983, [38] Moser, 1964, [39] Moser, 1967, [40] Phillips et al., 2017, [41] Hölldobler, 1967.

an ant colony, thus they provide a weakness in colony defense
due to the chemical mimicry or camouflage strategies used
by nest associates. For example, many social parasites and
myrmecophiles invade the ant nest as a “wolf in sheep’s clothing”
using a CHC-based chemical disguise (Vander Meer and Wojcik,
1982; Lenoir et al., 2001; Akino, 2008; Blomquist and Bagnères,
2010). In such cases, CHC mimicry is not eavesdropping, but an
infiltration strategy.

However, CHCs may be used by parasitoids to discriminate
among the specific castes and life stages of their ant hosts
(Table 1) when these chemical signatures function as signals.
We define signals as sender-produced actions or structures that

alter receiver behavior, and are the product of coevolutionary
processes between actors (Maynard-Smith and Harper, 2003).
Direct observation indicates ants can readily locate and
manipulate their brood in different settings, implying that
the same pheromones (and other cues) may be exploitable
by brood-specific natural enemies. However, the unambiguous
identification of ant brood-specific recognition signals has
remained controversial (Morel and Vander Meer, 1988; Casacci
et al., 2013). Evidence indicates at least some post-embryonic
developmental ant stages emit some form of chemical (Walsh
and Tschinkel, 1974; Brian, 1975) and even sound (Casacci
et al., 2013). It is therefore possible that these associates
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TABLE 2 | Eavesdropping ant species using trail pheromones of distantly related ant hosts.

Subfamily: Trail parasite species Host species (Subfamily) Nest sharing Nest/trail location References

Dolichoderinae:

Dolichoderus debilis Crematogaster carinata (Myrmicinae) Yes Canopy Swain, 1980

Dolichoderus cuspidatus Polyrhachis ypsilon (Formicinae) No Canopy Menzel et al., 2010

Formicinae:

Camponotus beebi Azteca chartifex (Dolichoderinae) Yes Canopy Wilson, 1965

Camponotus blandus Pseudomyrmex termitarius (Pseudomyrmecinae) Yes Ground/termite nest Gallego-Ropero and Feitosa, 2014

Camponotus femoratus Crematogaster limata (Myrmicinae) Yes Canopy Swain, 1980

Camponotus femoratus Crematogaster levior (Myrmicinae) Yes Canopy Swain, 1980

Camponotus lateralis Crematogaster scutellaris (Myrmicinae) No Deadwood (tree, log) Goetsch, 1953; Kaudewitz, 1955

Camponotus rufifemur Crematogaster modiglianii (Myrmicinae) No Canopy Menzel et al., 2010

Camponotus saundersi Polyrachis ypsilon (Formicinae) No Canopy Menzel et al., 2010

Camponotus vitreus Crematogaster cf. polita (Myrmicinae) No Canopy/stems Menzel, 2009

Camponotus sp. Crematogaster inflate (Myrmicinae) No Canopy Ito et al., 2004

Camponotus sp. Crematogaster coriaria (Myrmicinae) No Canopy/deadwood Menzel, 2009

Camponotus sp. Crematogaster sp. (Myrmicinae) No Unknown/deadwood Baroni Urbani, 1969

Lasius niger Formica rufibarbis (Formicinae) No Underground Binz et al., 2014

Oecophylla longinoda Cataulachus guineensis (Myrmicinae) No Canopy Dejean, 1996

Polyrachis rufipes Gnamptogenys menadensis (Ectatomminae) No Underground Gobin et al., 1998

Polyrachis sp. Camponotus cylindrica (Formicinae) Yes Canopy Davidson et al., 2007

Myrmicinae:

Cephalotes maculates Azteca trigona (Dolichoderinae) No Canopy Adams, 1990

Cephalotes specularis Crematogaster ampla (Myrmicinae) No Canopy Powell et al., 2014

Formicoxenus nitidulus Formica rufa pratensis (Formicinae) Yes Mound/underground Elgert and Rosengren, 1977

Pogonomyrmex colei Pogonomyrmex rugosus Yes Ground Johnson et al., 1996

Host and parasite nest sharing is indicated with yes/no and the location of nest and trail are described. Information was gathered from references found with Google
Scholar (search words: “ant trail parasites,” “ant eavesdropping,” “eavesdrop trail,” and “trail follow ants”). Additionally, references in each paper were reviewed, as were
the papers on the Google Scholar “cited by” function. If there was evidence of heterospecific species trail use in nature, it was included in the table.

eavesdrop upon nestmate recognition pheromones, but may also
detect host-derived cues that range across sensory modalities.
Determining eavesdropping on CHC signals is technically
challenging because decoupling sensory modalities may be
difficult, but still worthy of future studies. Host-derived short-
range cues (e.g., tactile, chemical and auditory) as well as CHC-
based signals are likely part of a complex of features enabling
successful host exploitation.

How Enemies and Other Associates Find
Hosts
The success of specialized ant associates is dependent on their
ability to find hosts (or prey). The first challenge the exploiters
face is locating their victim (Encounter Phase, Figure 1)
(Combes, 2005). Although small ant colonies can quickly relocate
in response to predation or disturbance (O’Shea-Wheller et al.,
2015), species that invest substantial energy in building elaborate
nest structures are often stationary targets (Hughes et al.,
2008). In either case, associates locate hosts by using visual
and olfactory cues that enable them to orient toward habitats
occupied by their hosts (Morehead and Feener, 2000b; Lachaud
and Pérez-Lachaud, 2012) (Figure 1A). Next, they detect host-
derived chemical cues. These may be waste byproducts or
long-range chemical signals such as trail, nest-marking and
defense pheromones (Figure 1B). Once in close proximity, host

acceptance prompts the Exploitation Phase. Species identification
can be accomplished by detecting species-specific short-range
chemical cues; at this stage, eavesdropping is possible if enemies
or other associates are intercepting signals (e.g., sex and contact
pheromones) (Figure 1C) (Bagnères and Wicker-Thomas, 2010).
Predatory enemies would consume their prey at this stage.
As the Exploitation Phase continues, social parasites (i.e.,
social species that exploit other social species), parasitoids, and
myrmecophiles (i.e., associated organisms that live part or most
of its life inside the host ant nest with ants, parasitoids excluded
herein), appraise whether an individual or a colony has been
previously attacked by conspecifics by detecting oviposition-
marking pheromones, to avoid superparasitism (Figure 1D).
Once the ant enemy or myrmecophile associate invades the
organism or ant colony, it may regulate its host physiologically
or behaviorally to maximize its own fitness returns (Figure 1E)
(Vinson, 1976; Henne and Johnson, 2007; Mathis and Philpott,
2012; de Bekker et al., 2018). While we will focus on how
olfaction influences host-finding behavior, it is important to
keep in mind that multiple sensory modalities are likely at
play and will affect ant associate behavior. Determining the
role of different sensory modalities and their interaction (e.g.,
independent, additive, multiplicative) is necessary to test the
chemical eavesdropping hypothesis. Furthermore, life experience
and learning will also influence the success of host-finding
(Vet and Dicke, 1992).
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TABLE 3 | Experimentally determined chemicals used by eavesdropping ant associates.

Type, Family:
Eavesdropping
associate

Host species (Subfamily) Chemical(s) Function References

Fly, Phoridae:

Pseudacteon
brevicauda

Myrmica rubra (Myrmicinae) 3-octanone; 3-nonanone;
3-Octanol

Alarm pheromone Witte et al., 2010

Pseudacteon
formicarum

Lasius spp. (Formicinae) HCOOH (Formic acid) Defense pheromone Maschwitz et al., 2008

Pseudacteon
curvatus

Solenopsis spp.
(Myrmicinae)

2-methyl-6-alkylpiperidine Defense pheromone Sharma and Fadamiro,
2013

Pseudacteon
obtusus

Solenopsis spp.
(Myrmicinae)

2-methyl-6-alkylpiperidine Defense pheromone Sharma and Fadamiro,
2013

Pseudacteon
tricuspis

Solenopsis spp.
(Myrmicinae)

2-methyl-6-alkylpiperidine Defense pheromone Sharma and Fadamiro,
2013

Pseudacteon
curvatus

Solenopsis spp.
(Myrmicinae)

2-ethyl-3,6-dimethyl
pyrazine

Alarm pheromone Ngumbi and Fadamiro,
2015

Pseudacteon
cultellatus

Solenopsis spp.
(Myrmicinae)

2-ethyl-3,6-dimethyl
pyrazine

Alarm pheromone Ngumbi and Fadamiro,
2015

Pseudacteon
obtusus

Solenopsis spp.
(Myrmicinae)

2-ethyl-3,6-dimethyl
pyrazine

Alarm pheromone Ngumbi and Fadamiro,
2015

Pseudacteon
tricuspis

Solenopsis spp.
(Myrmicinae)

2-ethyl-3,6-dimethyl
pyrazine

Alarm pheromone Ngumbi and Fadamiro,
2015

Pseudacteon spp. Solenopsis spp.
(Myrmicinae)

2-ethyl-3,6-
dimethylpyrazine

Alarm pheromone Sharma et al., 2011

Pseudacteon sp. Azteca instabilis
(Dolichoderinae)

1-acetyl-2-
methylcyclopentane

Alarm pheromone Mathis et al., 2011

Apocephalus
paraponerae

Paraponera clavata
(Paraponerinae)

4-methy-3-heptanone
4-mehtyl-3-heptanol

Alarm pheromone Feener et al., 1996

Fly, Syphidae:

Microdon mutabilis Formica lemani
(Formicinae)

methyl-6-methylsalicylate Alarm pheromone Schönrogge et al., 2008

Spider, Zodariidae:

Habronestes
bradleyi

Iridomyrmex purpureus
(Dolichoderinae)

6-methyl-5-hepten-2-one Alarm pheromone Allan et al., 1996

Zodarion rubidum Lasius platythorax Formica
rufibarbis (Formicinae)

decyl acetate; undecane Alarm pheromone Cárdenas et al., 2012

As we have explained above, many ant associates—specifically
social parasites, myrmecophiles, and some parasitoids—infiltrate
and integrate into the nest by exploiting nestmate recognition
signaling systems (Lenoir et al., 2001; Akino, 2008). While
eavesdropping involves enemies and other associates detecting
host-derived signals during host location (Figure 1B) and host
acceptance (Figure 1C), successful colony infiltration occurs
during the host acceptance stage (Figure 1C, bottom panel).
Detection of host pheromones (i.e., eavesdropping) is distinct
from traits that have evolved in response to host resistance
(e.g., alteration of CHCs resulting in chemical mimicry).
Colony integration, often achieved by the same mechanisms as
“infiltration,” refers to associates that live for longer periods of
time with their host (Figure 1D, bottom panel). In this case, they
can maintain a chemical disguise and use weaponry to regulate
host behavior (Figure 1E) while avoiding expulsion from the nest.
Although the cuticular hydrocarbon profiles of many ant hosts
and their associates have been evaluated, we still do not know how
most associates locate their host (Figures 1A–C). The examples
we present will address chemical eavesdropping during host

location and acceptance (Figures 1B,C), when essential host-
derived pheromones (e.g., defense, trail, nestmate recognition)
are detected by the eavesdropping associates.

ENEMIES AND ASSOCIATES OF THE
ANTS

Numerous specialized ant associate species exploit individual
ants (e.g., parasitoids and predators) or take advantage of
shared colony resources (e.g., cleptoparasites, social parasites
and myrmecophiles) (Table 1). The best-studied enemies are
the parasitoid scuttle flies (Brown and Feener, 1991; Brown,
2001; Disney et al., 2006, 2008; Patrock et al., 2009; Morrison,
2012; Pérez-Lachaud et al., 2017) and wasps (Lachaud and
Pérez-Lachaud, 2012; Murray et al., 2013) that attack exposed
foragers. Other associates consume ant larvae (Masner, 1959;
Wing, 1983; Loiácono et al., 2000), attack the queen (Johnson
et al., 2002; Barbero et al., 2009; Briano et al., 2012), or are
benign myrmecophiles scavenging on waste or taking advantage

Frontiers in Ecology and Evolution | www.frontiersin.org 5 March 2020 | Volume 8 | Article 24

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00024 March 11, 2020 Time: 18:52 # 6

Adams et al. Interspecific Eavesdropping on Ant Chemical Communication

FIGURE 1 | A graphic model of the sequential challenges associates face to successfully exploit an ant host. Different chemical cues can aid the associate in finding
and appraising their host. When an enemy is intercepting a signal (e.g., pheromone), this is considered eavesdropping. (A) Habitat selection. Environmental chemical
cues can aid the associate in narrowing search patterns. (B) Host location. Host-derived long-range chemical cues can guide the ant associate to a host individual
(top panel) or nest (bottom panel) after arriving to the host habitat. (C) Host acceptance. Once the host individual (top panel) or nest (bottom panel) is located, the
associate will determine if it is acceptable (e.g., correct species, life stage, caste, etc.). In some cases the associate will infiltrate the nest at this stage (bottom panel).
Predators will consume their prey at this stage. (D) Host appraisal. In order to avoid superparasitism, some associate species are able to detect the chemical
signature or oviposition-marking of hetero- or conspecifics, thus avoiding the fitness cost of sharing a host. In some cases this can occur at the same time as colony
integration within the nest (bottom panel). (E) Host regulation. After infecting the host, the parasite can manipulate host behavior or physiology in order to maximize
its fitness gains. Sequential challenges were inspired by Vinson (1976) and Mathis and Philpott (2012) whereas the host encounter phase and exploitation phases
were inspired by Combes (2005). Illustrations by Rozlyn E. Haley adapted from photographs by Alex Wild.
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BOX 1 | Continued

BOX 1 | Leaf-cutting ants and generalized natural history of the associates.
Two leaf-cutting genera, Atta and Acromyrmex use sophisticated chemical
communication systems to maintain efficiency, order, and protection for their
conspicuous nests and trail systems (ca. 90 m long in Atta; Hölldobler and
Wilson, 2011). Nest structures with millions of workers are labeled with
colony-specific territorial pheromones [e.g., n-heptadecane, (Z)-9-
nonadecene, 8,11-nonadecadiene] and trail pheromones (e.g., methyl
4-methylpyrrole-2-carboxylate, 3-ethyl-2,5-dimethylpyrazine) with Dufour’s
gland secretions (Tumlinson et al., 1972; Evershed and Morgan, 1981;
Salzemann et al., 1992). Colonies are protected by specialized workers that
emit volatilized alarm pheromones (e.g., 4-Methyl-3-heptanol, 3-octanone,
2-heptanone, 4-Methyl-3-heptanone, citral) (Blum et al., 1968; Hölldobler and
Wilson, 1990; Norman et al., 2017). (A) A phorid fly hovers above Atta
workers, attracted to trail pheromones. The parasitoid larva will develop and
decapitate the host ant just before pupation. (B) Diapriid wasp searching for
the host nest (e.g., Acromyrmex). (C) The gravid female searches for brood
chamber then lays an egg(s) into a host larva. The parasitoid consumes the
host and emerges inside the ant nest. (D) Attaphila roach following host ant
trail (dotted lines). Illustrations by Rozlyn E. Haley adapted from photographs
by Alex Wild.

of the protected shelter (Hölldobler and Wilson, 1990). Below
we review a diversity of cases where natural history evidence
suggests eavesdropping on host-derived communication systems
(i.e., trail, alarm and recognition) to locate the host ant, the host
nest, or the host brood. We limit the scope to organisms or
lineages that are good candidates for hypothesis-driven research
testing for chemical eavesdropping on ants.

Parasitoids of Workers
Scuttle Flies (Diptera: Phoridae)
Host-derived ant pheromones are attractants to the so called
“ant-decapitating flies” or scuttle flies (Diptera: Phoridae)
(Table 1 and Boxes 1A, 2A). These parasitoids develop in
specific body regions of their host ants, with one or more flies
emerging per ant. The phorid flies that attack fire ants and
leaf-cutter ants (Box 1A) have been studied more intensively
because their hosts are considered pests (Hölldobler and Wilson,
1990), but many other ant lineages are vulnerable to these
parasitoids (Hsieh and Perfecto, 2012). Species in >20 genera
of phorids (especially Pseudacteon, Apocephalus, Eibesfeldtphora,
Myrmosicarius, Neodohrniphora) (reviewed in Folgarait, 2013),
collectively attack more than 22 genera of ants in five subfamilies
(Mathis and Philpott, 2012). The flies potentially affect colony-
level fitness via worker mortality and behavioral changes (e.g.,
reduced foraging) (Feener and Brown, 1992; Milton and Athayde,
2000; Elizalde and Folgarait, 2011; Hsieh and Perfecto, 2012).

Phorids can often be observed hovering above disturbed
ant nests (Witte et al., 2010), injured workers (Brown and
Feener, 1991) and foraging trails (Tonhasca, 1996). Trail and
alarm pheromones are reliable cues that likely “advertise” host
presence, whereas specific ant targets are selected based on
short-range chemical and visual cues (Farder-Gomes et al.,
2017). In some cases, CHC profiles confirm species identification
for final host acceptance by the attacking flies (Mathis and
Tsutsui, 2016) (Figure 1C, top panel). When searching for an
appropriate oviposition point, the flies may detect oviposition
-marking pheromones (i.e., used to inform conspecifics of a
previously utilized host) or other signs from previous parasitoids
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BOX 2 | Continued

BOX 2 | Pendulous carton forming Azteca ants and generalized natural history
of the associates. While territorial markings have yet to be discovered, these
aggressive arboreal ants maintain foraging territories with trail pheromones
from their Pavan’s gland and alarm pheromones from the pygidal glands
(Adams, 1994). Straight-chain and cyclic ketones (e.g., 2-heptanone and
2-methylcyclopentanone, respectively) act as alarm pheromones attracting
nearby nestmates (Wheeler et al., 1975; McCann et al., 2013) while volatile
aldehydes and iridoids (e.g., nepetalactol, iridoidal isomers) may
simultaneously signal nest location (Adams, 1994; Nascimento et al., 1998).
Less volatile chemicals such as cuticular hydrocarbons provide short-range
information that allows parasitoids to discriminate between species (Mathis
and Tsutsui, 2016). (A) A phorid fly hovers outside Azteca nest, attracted by
alarm pheromones. After locating a suitable host ant, the phorid lays an egg
inside her. The parasitoid larva will develop and decapitate the host just before
pupation. (B) Cephalotes cleptoparasite workers follow the trail pheromones
(dotted line) of Azteca scouts to locate new food sources. Illustrations by
Rozlyn E. Haley adapted from photographs by Alex Wild.

(Figure 1D, top panel). Finally, the developing phorid larva may
manipulate the behavior of the host ant until development of
the parasitoid is complete (often culminating in decapitation
of the host; Figure 1E, top panel) (reviewed in Henne and
Johnson, 2007; de Bekker et al., 2018). Stages leading to successful
exploitation have been studied in various systems where colony
size is large and ant nests are permanent (see case studies of Atta
Box 1 and Azteca Box 2) but also in species where workers forage
individually (e.g., Paraponera) or in large groups (e.g., army ants).
Due to their high diversity, the phorid flies are an informative
research model for understanding host specificity, and the
ecology and evolution of eavesdropping of ant chemical signals.

More than 80 phorid fly species parasitize leaf-cutter ants
(i.e., Atta and Acromyrmex, collectively 51 species) (Box 1A)
(reviewed in Folgarait, 2013). Phorids frequently attack Atta
on foraging trails or at refuse piles (Milton and Athayde,
2000; Elizalde and Folgarait, 2012; Folgarait, 2013), and the
threat of phorids presumably causes some leaf-cutter species to
forage crepuscularly or at night (Orr, 1992). Hovering phorid
flies cause reduced foraging activity, and defensive postures in
workers that include hitchhiking minima workers riding on leaf
fragments (Milton and Athayde, 2000; Elizalde and Folgarait,
2012; Folgarait, 2013). Given that phorid flies target Atta on
foraging trails (Box 1A), it is likely that these parasitoids
eavesdrop on trail pheromones (Milton and Athayde, 2000;
Elizalde and Folgarait, 2012; Folgarait, 2013). The compound
2,5-dimethyl-3-ethylpyrazine is found in several leaf-cutter trail
pheromones (Cross et al., 1982; Morgan et al., 2006), and it is
also an alarm pheromone of Solenopsis fire ants (Vander Meer
et al., 2010) and an attractant for phorid flies (Sharma et al.,
2011; Ngumbi and Fadamiro, 2015). Experiments are needed to
determine if this compound attracts phorids to Atta trails.

To date, only the phorid genus Pseudacteon is known to be
associated with Azteca spp. (Feener and Brown, 1997; Mathis
et al., 2011). Azteca workers noticeably attempt to dodge phorid
fly parasitoids when the nest is damaged or when the ants
are otherwise alarmed. The phorids are attracted to alarm
pheromones emitted from the nest surface (Box 2A) as in other
parasitized species (Feener and Brown, 1997; Morehead and
Feener, 2000a). Phorids tend to cluster near disturbed workers,
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and cause reduced survivorship in areas where Azteca nests are
very dense (Vandermeer et al., 2008; Philpott et al., 2009). As the
flies hover to find a suitable host, there is a conspicuous change
in ant behavior. Sometimes the ants simply flee, other times they
appear to act aggressively toward the flies, as described in other
ant-phorid systems (Feener, 1988). The threat of phorid attack
also reduces Azteca activity at baits, interferes with their ability
to protect trophobionts from predators and parasites, and limits
their ability to defend plants against herbivores (Philpott et al.,
2004; Hsieh and Perfecto, 2012; Hsieh et al., 2012). Knowledge
of the chemical ecology of Azteca is limited, but three species
(i.e., Azteca instabilis, A. nigriventris, and A. velox) release the
same cyclopentyl ketones from their pygidial gland as defensive
substances (Wheeler et al., 1975; Mathis et al., 2011). Although
these species do not build carton nests, similar and overlapping
compounds are widespread among Azteca spp. (Box 2) (Billen,
1986; Nascimento et al., 1998; Longino, 2007; McCann et al.,
2013). One Pseudacteon species eavesdrops specifically on cis-
1-acetyl-2-methyl-cyclopentane to locate and attack A. instabilis
(Mathis et al., 2011). However, there is convincing evidence
that visual cues (e.g., motion and ant shape) are also
important for host-finding phorids, suggesting that the alarm-
defense pheromones are part of multisensory decision making,
leading to parasitoid success (Morehead and Feener, 2000b;
Mathis et al., 2011).

At least 36 Pseudacteon phorid species parasitize Solenopsis
invicta and Solenopsis saevissima; 17 phorid species attack
Solenopsis invicta alone (reviewed in Chen and Fadamiro, 2018).
The small Pseudacteon flies are attracted to disturbed fire ant
mounds and hover above distressed and alarmed ants. Once
the host colony is located, the flies move closer to size-select
their victims for optimal offspring development (Morrison and
Gilbert, 1999). Despite numerous studies on these flies, exactly
how they locate fire ant nests from long distances remains
unclear (Mathis and Philpott, 2012). However, piperidine venom
alkaloids and 2,5-dimethyl-3-ethylpyrazine are both defensive
substances (e.g., venom, alarm pheromones) that attract phorid
flies in close-range interactions (Sharma and Fadamiro, 2013;
Ngumbi and Fadamiro, 2015). Natural history accounts of the
attraction of phorid flies to disturbed nests thus supports the
experimental studies concluding that alarm pheromones are
involved in host location (Morrison and King, 2004; Sharma and
Fadamiro, 2013; Ngumbi and Fadamiro, 2015). The chemical
ecology of fire ants is relatively well studied (Tschinkel, 2006),
thus they are excellent research models for identifying the exact
compounds that lure parasitoids and determining if they are
indeed used by eavesdropping enemies and associates.

There are other notable advances in our understanding of
chemical eavesdropping by phorid flies in a number of other
systems. Paraponera clavata (Formicidae: Paraponerinae) are
attacked by the phorid Apocephalus paraponerae. These phorids
are attracted to the two major products of the mandibular glands
of P. clavata, 4-methyl-3-heptanol and 4-methyl-3-heptanone
(Feener et al., 1996). Interestingly, these compounds are found
in alarm pheromones of many ant species belonging to other
subfamilies (Morgan, 2008), including Atta and Acromyrmex
(Norman et al., 2017). Ant species in the subfamily Formicinae

produce formic acid in their venom and this compound is the
primary host location cue attracting Pseudacteon formicarum to
Lasius niger and Lasius emarginatus (Formicidae: Formicinae)
(Maschwitz et al., 2008). Similarly, Myrmica rubra produces 3-
octanone, non-anone and 3-octanol in their mandibular gland
(Cammaerts et al., 1981) and these defense substances serve
as attractants for Pseudacteon brevicauda. Phorid flies are most
often specialists, attacking a single host ant species (Porter, 1998;
Weissflog et al., 2008; Witte et al., 2010; Folgarait, 2013) but the
chemical attractants of phorids may be more indiscriminate for
long-range host localization. Once the fly has entered the habitat
and found the nest or trail, they appear to use species-specific
hydrocarbons to ensure species specificity (Mathis and Tsutsui,
2016). Phorids are recorded as the most-commonly observed
associates among army ant bivouacs, raid trails, and refuse piles
(Rettenmeyer and Akre, 1968). Hundreds of species interact with
army ants and the genus Megaselia is by far the most common.
Although observations suggest flies follow trails, eavesdropping
on signals has not been formally demonstrated and remains a
hypothesis. The great majority of phorid flies associated with
army ants are found only in refuse piles, suggesting most
species are opportunistic rather than ant-specific associates
(Rettenmeyer and Akre, 1968).

Parasitoids of Brood
Wasps
Approximately 140 identified endo- or ectoparasitic wasp species
(superfamilies: Chalcidoidea, Ichneumonoidea, Diaprioidea)
attack ants at different life stages, including brood (Table 1)
(reviewed in Lachaud and Pérez-Lachaud, 2012). Host-finding
strategies vary where some wasps pursue host workers and others
seek the host nest, both using host-derived chemicals. Below
we present cases where the natural history of the parasitoids
suggests that chemical eavesdropping plays an important role in
host localization.

Orasema wasps (Hymenoptera: Chalcidoidea: Eucharitidae)
The pantropical wasp genus Orasema includes many species
that are specialist parasitoids of Myrmicine ants (Heraty, 1994;
Murray et al., 2013; Torréns, 2013). They are important natural
enemies of ant colonies and specifically attack brood. The cues
that guide female Orasema wasps to certain plants within their
host ant territories currently are unknown (Torréns, 2013), but
plant-derived volatiles likely attract the gravid female wasps, as
is the case in other parasitoid systems (e.g., Wei et al., 2007).
Once the wasps locate their host habitat (Figure 1A, top panel)
they lay their eggs on specific plant structures (e.g., extrafloral
nectaries or leaves) (Box 3A) (Heraty, 1994; Carey et al., 2012;
Herreid and Heraty, 2017). The active wasp larva is then picked
up by, or attaches itself to a host ant forager, suggesting that
the wasp larva eavesdrops on CHCs or other host recognition
pheromones (Figures 1B,C, top panel). While the ectoparasitic
larva feeds (Box 3B) (Das, 1963), nurse ants tend the parasitoid
brood, which are chemically similar to host brood and remain
undetected (Vander Meer et al., 1989).

Orasema wasps can be locally common in some regions of
South America, with as many as half the fire ant colonies being
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affected (Varone et al., 2010). Field observations indicate that
wasps parasitizing fire ants are often attacked and killed by
workers upon emergence (Varone and Briano, 2009). In contrast,

BOX 3 | Continued

BOX 3 | Solenopsis fire ants and generalized natural history of the associates.
Often foraging underground, fire ants use Z,E-α-Farnesene trail pheromones
produced in their Dufour’s gland for recruitment and orientation (Suckling
et al., 2010). Solenopsis invicta dominate habitats by recruiting nestmates
with mandibular gland alarm pheromones (e.g., 2-ethyl-3,6-dimethylpyrazine)
(Vander Meer et al., 2010) while also using toxic piperidene alkaloid venom
against prey and competitors (Greenberg et al., 2008; Lai et al., 2010; Fox
et al., 2019). In contrast, to these volatile defense pheromones, cuticular
hydrocarbon-based nestmate and species recognition pheromones, primarily
function in short-range communication (Leonhardt et al., 2016). (A) Eucharitid
wasps, specialized parasitoids of ants, lay eggs in or on plant tissue. A 1st
instar larvae attaches itself to a foraging ant then is carried back to the nest.
(B) Once inside, the Eucharitid wasp larva locates, and then feeds on host
brood (pupa pictured). (C) Inquiline social parasite queen Solenopsis daguerrei
discovers a host nest, enters, and then attaches itself to the host queen. She
will only produce sexual offspring, eventually killing the host colony.
Illustrations by Rozlyn E. Haley adapted from photographs by Alex Wild.

other wasp species that attack the brood of Ectatomma ants are
carried outside the nest by the Ectatomma workers and dropped,
apparently unharmed (Pérez-Lachaud et al., 2015). Orasema and
other members of the species-rich wasp family Eucharitidae
parasitize multiple ant subfamilies where the phylogenetic
relationships within the genera are well understood (e.g.,
Ectatomma, Camponotus, Solenopsis) (Shoemaker et al., 2006;
Clouse et al., 2015; Nettel-Hernanz et al., 2015). These lineages
would be ideal for examining parasitoid-host coevolution or
associate richness in the context of eavesdropping of chemical
signals (see section Future Perspectives).

Diapriid wasps (Hymenoptera: Diaprioidea: Diapriidae)
The family Diapriidae has an estimated 4,000 species in three
subfamilies (Ambositrinae, Belytinae, and Diapriinae) (reviewed
in Lachaud and Pérez-Lachaud, 2012). The latter two lineages
contain parasitoids of ant species; however, much of their natural
history is unknown. Still, morphological adaptations such as
winglessness and body sculpturing suggest host specificity and
mimicry (Masner and García, 2002). Many species appear to be
nocturnal, but those that attack army ants and fungus-growing
ants attempt to enter host nests during the day (Masner and
García, 2002; Fernández-Marín et al., 2006). Gravid females are
challenged with the task of finding their host habitat (Figure 1A,
bottom panel), then locating and invading the host colony which
they presumably accomplish via species-specific nest marking
cues (Figures 1B,C, bottom panel). They also must distinguish
larvae from pupae during oviposition within the dark nest
(Figure 1C, bottom panel). The young wasps develop amidst ant
brood and emerge from the nest as adults seemingly unharmed
by the resident ants.

Observations of host and parasitoid diapriid wasps
(Hymenoptera: Diaprioidea: Diapriidae) are mainly descriptive
accounts of parasitism (Loiácono et al., 2000; Fernández-
Marín et al., 2006; Ramos-Lacau et al., 2007; Pérez-Ortega
et al., 2010). Still, there are many reports of diapriid
wasps associated with the nomadic columns of army ants
(Loiácono et al., 2013a), most of which are in the tribe
Diapriini; however, they are rarely collected because of
their diminutive size. Several diapriids that associate with
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ants may actually exploit myrmecophiles and not the ants
(e.g., dipterans Masner, 1977), thus the mere presence of
these wasps in and around a nest is not definitive evidence
for ant parasitism.

Diapriid wasp species from multiple genera (e.g., Acanthopria,
Szelenyiopria, Mimopriella, Oxypria) associate with fungus-
growing ant species (Hymenoptera: Formicidae: Myrmicinae:
Attini: Attina) (Loiácono et al., 2000, 2013a,b; Fernández-
Marín et al., 2006; Pérez-Ortega et al., 2010). In one study, 14
Cyphomyrmex rimosus colonies were artificially disturbed and
forced to relocate their nests (Fernández-Marín et al., 2006).
Males and females of Acanthopria wasps were reported to
remain close to disturbed ants and brood but no mechanism to
explain this close proximity was suggested. If nest disturbance
attracts the wasps or induces the emergence of adults, then
these individuals could be collected and used in trials with
host ant pheromones to test for eavesdropping. The alarm
pheromone, 1-octen-3-ol, produced by Cyphomyrmex rimosus
and Trachymyrmex cornetzi (Norman et al., 2017; Hamilton
et al., 2018) may be a good compound to explore first.
Additionally, the chemical ecology of fungus-growing attine
ants has recently expanded (Hogan et al., 2017; Norman
et al., 2017; Hamilton et al., 2018) and the phylogenetic
relationships within the Attina subtribe are well understood
(Branstetter et al., 2017), therefore this lineage of host ants
offers great experimental potential for the identification of
parasitoid attractants.

Syrphid flies (Diptera: Syrphidae: Microdontinae)
Approximately 20% of all flies are parasitoids (Feener and
Brown, 1997). The family Syrphidae (i.e., hoverflies, flower
flies) contains ca. 6,000 species globally (Pérez-Lachaud et al.,
2014), and includes many important pollinators, parasitoids,
and predators (Table 1). The syrphid Hypselosyrphus trigonus
is a neotropical parasitoid that resembles a stingless bee and
attacks ponerine ants (e.g., Neoponera villosa) (Pérez-Lachaud
et al., 2014; Pérez-Lachaud and Lachaud, 2017). Apparently,
this is the first parasitoid fly known to attack the brood of
ants (Pérez-Lachaud et al., 2014). The gravid female—much
like diapriid wasps—seeks host habitat (Figure 1A, bottom
panel), and then likely uses species-specific host cues to
locate and enter the host nest (Figures 1B,C, bottom panel).
Finally, they are challenged to determine the location of the
brood in the nest and oviposit on prepupae (Figure 1C,
bottom panel) (Pérez-Lachaud et al., 2014). While other
microdontine syrphids are known ant brood predators (see
below) (Elmes et al., 1999), this case of parasitism is remarkable
given that Hypselosyrphus females must safely enter the ant
colony, presumably undetected. Eavesdropping by these flies is
so far untested.

Predators of Both Workers and Brood
Many predacious invertebrates feed on ant workers and brood,
including spiders, caterpillars, beetles, and flies (Table 1). Just like
the parasitoids, these predatory interactions occur both inside
and outside of the nest, and have the potential to be facilitated by
chemical eavesdropping. They are challenged with encountering

their prey where first they locate habitat (Figure 1A) then
a worker (Figure 1B, top panel) or brood within the nest
(Figure 1B, bottom panel), depending on which life stage they
prey on. Finally, they consume their prey (Figure 1C).

Paussus Ant-Nest Beetles (Coleoptera: Carabidae:
Paussinae)
The paussines or ant-nest beetles are a large subfamily of nearly
800 species that are facultative and obligate associates that prey
on the brood and workers of mainly myrmicine and formicine
species (Table 1) (reviewed in Geiselhardt et al., 2007). They have
characteristic adaptations (e.g., morphology, chemical weaponry,
sound production) that indicate a long coevolutionary history
with ants (Maurizi et al., 2012) but have also undergone rapid
adaptive radiation (Moore and Robertson, 2014). While most
ant-beetle interactions are described anecdotally in taxonomic
papers, some natural history and experimental evidence indicates
that paussines eavesdrop on pyrazine trail pheromones (Ali et al.,
1988; Cammaerts et al., 1990). Laboratory experiments using
glandular extractions of Pheidole pallidula trail pheromones
showed that adult Paussus (Edaphopaussus) favieri follow host
trails (Cammaerts et al., 1990). While inside the nest, the larvae
and adult beetles prey on the host ants (eggs, larvae, adults).
It is possible that they detect chemicals that mark different
areas of the nest (e.g., brood chamber vs. non-brood chamber)
(Heyman et al., 2017) or brood-specific contact pheromones
(Walsh and Tschinkel, 1974); however, both hypotheses require
experimental verification.

Myrmecophagous Spiders
Many spiders use chemical cues to locate mates and prey (Foelix,
2010; Johnson et al., 2011), and chemical eavesdropping on ants
occurs, or is suspected to occur in a variety of cases (Table 1).
The clearest example is the spider Habronestes bradleyi, which
locates workers of its preferred prey, Iridomyrmex purpureus
ants, by eavesdropping on their alarm pheromones (Table 3)
(Allan et al., 1996). Specifically, Allan et al. (1996) experimentally
demonstrated that 6-methyl-5-hepten-2-one released by injured
or agitated ants is used as a prey location cue by the
spider. Although less definitive, several other cases provide
circumstantial evidence for chemical eavesdropping on ants
by spiders. For example, orb-weaving spiders aggregate near
lycaenid butterflies that feed from Acacia trees, apparently by
detecting pheromones produced by Acacia-inhabiting ants (Elgar
et al., 2016). In another example, the ant-eating spider Zodarion
rubium recognizes specific chemical cues produced by glands
from formicine ants (Cárdenas et al., 2012). Similarly, prey-
seeking behaviors of the ant-eating jumping spider Habrocestum
pulex are enhanced by exposure to ant chemical cues in soil (Clark
et al., 2000). However, in cases where the spiders themselves are
vulnerable to predation by ants, ant-derived compounds were
shown to elicit habitat avoidance or increased dispersal behavior
(Mestre et al., 2014; Penfold et al., 2017).

Syrphid Flies (Diptera: Syrphidae: Microdontinae)
The nearly 350 species of Microdon syrphid flies are known
only from social insect nests (Table 1) (Wheeler, 1908). The
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gravid females of the myrmecophilous species locate the habitat
and seek their host’s nest to deposit eggs in or on the
nest structure, presumably eavesdropping on species-specific
chemicals such as nest-marking pheromones (Figures 1A–
C, bottom panel) (Akre et al., 1988). The oddly flattened
larvae complete the host acceptance phase when they migrate
into the nest (infiltration and integration), then to the brood
chambers to consume larvae and pupae (Garnett et al., 1985).
Microdon piperi larvae live inside the nest of Camponotus
modor, where they feed on host brood. Adults of this species
are attracted to excited host workers spraying formic acid
alarm pheromones (Akre et al., 1988), suggesting that males
and females may use host pheromones to find nests and
potential mates, but this was not experimentally determined.
Microdon mutabilis specifically attacks the larvae of the
alpine ant Formica lemani (Elmes et al., 1999). Females of
M. mutabilis extend their ovipositor when exposed to volatile
odors from F. lemani colonies, suggesting that they use host-
derived pheromones to locate the host nest before laying their
eggs. The active compound was experimentally demonstrated
to be methyl-6-methylsalicylate from the ants’ head extract
(Table 3) (Schönrogge et al., 2008). This compound occurs in
pheromones of various ants [e.g. Camponotus (Torres et al.,
2001); Tetramorium (Morgan et al., 1990)], and therefore should
be used in additional studies to determine eavesdropping in
other systems.

Lycaenid Caterpillars (Lepidoptera: Lycaenidae)
Of the estimated 6,000 species of lycaenid butterflies, over 600
species (10 genera) associate symbiotically with ants, but the
total number of myrmecophilous species is presumed to be
much larger (reviewed in Pierce et al., 2002). These include a
number of obligate parasitic or mutualist ant associates, and
at least 10 species feed on brood inside ant nests (Table 1)
(Pierce et al., 2002). Even where not strictly myrmecophilous,
lycaenid associates display adaptations (both as caterpillars and
adults) that protect them from ant aggression (Pierce et al., 2002),
suggesting a long coevolutionary history between Lycaenidae and
the Formicidae. Some myrmecophilous lycaenids eavesdrop on
host trail pheromones (Dejean and Beugnon, 1996). The lycaenid
caterpillars Euliphyra mirifica and E. leucyana for instance live
inside the ant nest of Oecophylla longinoda and follow their
trail pheromones (Dejean and Beugnon, 1996). In contrast
to other lycaenid species, these are commensals and do not
impose a significant fitness cost to the ants. Similar chemical
eavesdropping by other lycaenid species is likely but in the
context of predation (e.g., Liphyra brassolis) (Dodd, 1912) and
warrants more research.

Resource Exploitation by
Cleptoparasites, Social Parasites, and
Myrmecophiles
Many ant species use chemical trails to recruit nestmates to
food resources (Hölldobler and Wilson, 1990). While host ant
colonies must rely on these trail systems, other organisms use
them as highways to ambush foragers or to find and invade

host nests (Table 1). The marked diversity of trail following
eavesdroppers (e.g., roaches, caterpillars, and ant species)
illustrates the risk associated with ant chemical communication.
Direct observations of trail following myrmecophiles and
cleptoparasites are plentiful (Table 2) but there is a noticeable
gap in evidence demonstrating trail following in other types
of parasites. Furthermore, the chemical composition of trail
pheromones has been determined for many species, but the
specific components are often difficult to synthesize (reviewed in
Morgan, 2008, 2009). Thus experimental studies commonly rely
on glandular extractions to demonstrate eavesdropping (note,
despite our literature review, we could not find studies that
directly test specific trail pheromone compounds and therefore
none could be included in Table 3).

Trail Following Cleptoparasites
Long-lasting trail systems present an apparent vulnerability in
host ant colony defense (Tables 1, 2). A comprehensive list of
the cleptoparasites of ants (i.e., parasites that steal food from their
hosts inside or outside the nest) is beyond the scope of this review;
however, we present a few examples backed with experimental
evidence for trail-following as a host-association mechanism.
The natural history of cleptoparasites is partly determined by
the location of host food sources, including (1) colony nest
stores; (2) from workers via trophallaxis (i.e., mutual exchange
of regurgitated liquids); and (3) at food sources or trails outside
the nest. Cleptoparasites stealing food from inside the host ant
nest are faced with the challenge of habitat and nest location
(Figures 1A,B, bottom panel). By contrast, those stealing food
from outside the nest must locate the habitat and intercept
the host ants on trails to gather resources (Figures 1A,B, top
panel). Regardless, eavesdropping cleptoparasites illustrate how
the structure of social insect colonies (i.e., fixed nest location and
central-point foraging) provide variable access to resources that
potentially influences parasite community structure.

Cockroaches (Blattaria: Polyphagidae)
An emblematic example of a trail-following nest associate is
provided by cockroaches living with leaf-cutting ants (Table 1).
At least six species of Attaphila (Blattaria: Polyphagidae)
cockroaches live in Atta and Acromyrmex nests (Rodríguez et al.,
2013). These cockroaches are small (ca. 3.5 mm) and wingless
with reduced sensory and glandular systems (Box 1D) (Brossut,
1976; Wheeler, 1900). They live in the ants’ fungus garden, where
they graze (Wheeler, 1900; Phillips et al., 2017) and acquire nest-
specific cuticular hydrocarbon signatures (Nehring et al., 2016)
while behaving as cleptoparasites (Table 1). Attaphila climb onto
virgin Atta queens just before they leave the nest, and remain
attached until they are brought into the new host nest. This
suggests that the roaches can differentiate between castes, and
may use queen-specific pheromones (Dietemann et al., 2003).
Phillips et al. (2017) suggested that the young cockroaches use
host queens for dispersal and habitat location (Figure 1A, bottom
panel) but can also move to more established nests by following
Atta trails (Figure 1B, bottom panel) (Moser, 1964). Atta texana
use methyl 4-methylpyrrole-2-carboxylate as their volatile trail
pheromone (Tumlinson et al., 1972), but the concentration and
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exact trail components used by these cleptoparasites and other
Atta myrmecophiles (Box 1) (Waller and Moser, 1990) deserve
further exploration.

Ants (Hymenoptera: Formicidae)
Some cleptoparasite ants eavesdrop on trail pheromones of other
ant species to access food (Tables 1, 2) (Gobin et al., 1998; Powell
et al., 2014). Such trail parasitism is best known among arboreal
species, and is not limited to closely related or parabiotic (i.e.,
nest sharing) species (Table 2). For example, some Cephalotes
and Camponotus species are conspicuous trail parasites of
Azteca (Box 2B) (Wilson, 1965; Adams, 1990). Specifically,
Cephalotes maculatus follows Azteca trail pheromones and
coexists undetected at food resources with Azteca workers
(Adams, 1990, 2016). Data from multiple surveys of >150 trees
in Panama showed that Azteca trigona co-occurs more frequently
with Cephalotes maculatus than expected by chance (Adams
et al., 2017). A similar phenomenon was shown between the
highly aggressive Crematogaster ampla host and the comparably
demure Cephalotes specularis trail parasite (Powell et al., 2014).
While the host actively defends foraging territories, the trail
parasite eavesdrops on the host’s trail pheromones, locates, and
then exploits the food resources. A remarkable 89% of the
host territories contained the parasites, and host ants showed
no aggression toward them. Trail pheromone eavesdropping
behavior clearly is widespread in ants (Table 2), and hosts and
parasites often belong to different ant subfamilies.

Trail Following Social Parasites (Hymenoptera:
Formicidae)
Social parasitism has evolved independently numerous times
among the Formicidae (Buschinger, 2009). While there are many
types of social parasites (e.g., inquilines, slave-makers, thief ants,
guest ants) they are faced with the same challenges. They must
locate the habitat and nest of their host (Figures 1A,B, bottom
panel), infiltrate the colony (Figure 1C, bottom panel), and
extract colony resources (e.g., food and brood) (Figures 1C–E,
bottom panel). Unfortunately, host nest searching behavior is
infrequently observed in social parasites. Mycocepurus castrator
inquiline parasites experimentally placed near a host nest
quickly entered the nest signifying that they are able to sense
their host (Rabeling and Bacci, 2010). Dulotic slave-making
species and Megalomyrmex agro-predator raiders also find host
colonies as young queens or later as scout workers (Boudinot
et al., 2013; Ruano et al., 2013). This suggests they are using
host-derived chemical cues to find the host nest and brood
(Table 1). Trail pheromones and nest-marking pheromones with
low volatility are found around host nesting areas (Hölldobler
and Wilson, 1986; Cammaerts and Cammaerts, 1998; Steck,
2012) and likely play an important role in the host-finding
of many ant associates (Table 1), not only cleptoparasites
(Table 2). Eavesdropping on host-derived signals may be most
effective when used in concert with nest searching behavior. For
example, Gnamptogenys hartmanni, which are social parasites
of Trachymyrmex and Sericomyrmex fungus-growing species,
will search small holes near host nests (Dijkstra and Boomsma,
2003). Nest-searching behavior by scout ants coupled with the

detection of host-derived trail and nest-marking pheromones
likely work synergistically for host nest invasion. Finally, dulotic
slave-maker parasites have evolved independently at least 10
times (reviewed in D’Ettorre and Heinze, 2001). A comparative
study examining eavesdropping across lineages would offer great
insight into which host traits leave host ants vulnerable to
colony invasion.

Like slave-makers and agro-predators, socially parasitic
inquiline queens also seek and invade host nests alone.
Pogonomyrmex colei, an inquiline of Pogonomyrmex rugosus,
finds its host colony by following host trunk trails with or
without host workers, suggesting eavesdropping on host trail
pheromones (Johnson et al., 1996). Another inquiline is the
well-studied Solenopsis daguerrei, which lacks a worker caste.
Young queens invade a fire ant colony and firmly attach to the
functional host queen (Box 3C) (Calcaterra and Briano, 1999).
The parasites lay eggs that are intermingled with eggs from the
host queen and are reared by host workers, ultimately resulting
in the production of parasitic males and females. This intimate
and intricate association presumably involves eavesdropping at
different levels. While host nest mounds (Box 3) and other
environmental cues may aid in habitat location, trail or alarm
pheromones may attract the host-seeking parasite queen. She
likely locates the queen within the nest by eavesdropping on
queen-specific pheromones as this level of recognition is essential
for her success. Solenopsis daguerrei can parasitize a number of
fire ant species that are chemically distinct (Fox, 2018) suggesting
that ant chemical mechanisms for invasion are not species-
specific. This also implies the “encounter phase” (Figures 1A-
C, bottom panel) may involve host cues (e.g., nest-marking,
trail, and alarm pheromones) that are shared among host
species. As it stands, the chemical mechanisms for this intricate
symbiosis warrants further studies but the known natural history
points to eavesdropping as an essential component of social
parasite success.

Trail Following Myrmecophiles
While myrmecophiles associate with countless ant lineages,
the army ants likely host the most species that are currently
known (Rettenmeyer et al., 2011). Indeed, the vast array of
ant associates makes their functional classification exceptionally
difficult (Gotwald, 1995). Here, we use “myrmecophile” in
cases where the nature of the association is not well defined
or is deemed commensal, but fundamentally involves any
organism that lives at least part of its life associated with ants
(see Table 1).

Trail-following army ant associates are easily observed in the
field, thus contributing to the large list of taxa in this category
(Table 1). However, identifying species remains a significant
challenge (von Beeren et al., 2018). Many associates specifically
follow ant trails, and some myrmecophiles are more sensitive to
trail pheromones than are the ants (Akre and Rettenmeyer, 1968).
All of the ca. 30 known species of Vatesus beetles (Staphylinidae:
Tachyporinae) are army ant associates (von Beeren et al., 2016)
whose adults and larvae follow ant trails (Akre and Rettenmeyer,
1968; Akre and Torgerson, 1969). While the nature of the
association is often unknown, some beetles consume army ant
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booty (i.e., cleptoparasites) and dead army ant brood (i.e.,
commensals) (Akre and Torgerson, 1969).

Tiny myrmecophilous crickets are wingless ant symbionts
comprising some 60 described species that span the temperate
and tropical regions of the world (Kistner, 1982). These cricket
species associate with ant species in multiple genera (e.g.,
Atta, Formica, Pogonomyrmex) (Wheeler, 1900; Waller and
Moser, 1990). Some crickets are known to be egg predators or
cleptoparasites, where they either disrupt food exchange between
ants, or are directly fed (Henderson and Akre, 1986). In most
cases, the natural history of the crickets is unknown, thus they
are simply categorized as myrmecophiles. Host specificity differs
where some species are ant generalists and others have traits that
suggest a long coevolutionary history with their host (e.g., trail
following, chemical integration strategy) (Wheeler, 1900; Akino
et al., 1996; Wetterer and Hugel, 2008; Komatsu et al., 2013).
Myrmecophila manni (Orthoptera: Gryllidae) live with Formica
obscuripes, the western thatch ant, and follow their host trails
after colony migration to a new nest, suggesting eavesdropping
on trail pheromones (Henderson and Akre, 1986). However,
the host-finding mechanisms used during the encounter phase
(Figures 1A–D) of most ant-associated crickets is unknown, and
the generality of trail following is in need of further study.

CONCLUSION

Successful antagonistic interactions are initiated by host-finding
mechanisms that lead to efficient exploitation tactics. We
have illustrated a parasitological framework to summarize the
necessary encounter and exploitation phases used by ant enemies
and other associates (Combes, 2005). We move beyond the
initial stage of habitat location to focus on the stages where
eavesdropping on host-derived pheromones is most likely to
occur (Figures 1B,C). We distinguish between associates that
attack individual ants outside the nest (e.g., phorid flies)
and those that breach the protected fortress to reach ant
colony resources (food, brood, workers, queen) (e.g., social
parasites). Regardless of the initial target (individual or nest),
associates locate their host using either long- or short-range
chemical cues (Figure 1). We found that nine out of 10
different organism types (i.e., beetle, fly, spider, wasp, cockroach,
butterfly, ant, silverfish, and cricket) may follow their host’s
trail pheromones (Table 1). These include parasitoids, predators,
and parasites (i.e., social parasites and cleptobionts), although
more experimental work is needed to support this hypothesis.
However, a number of cleptoparasite ant species have been
shown to be “trail parasites” that tend to nest in the forest
canopy (Table 2).

Another form of chemical communication dispersed by
host ants is alarm pheromones. The volatile nature of alarm
pheromones may contribute to the fact that most of the
putative eavesdropping associates are flying insects (Table 1),
likely detecting the compounds in air currents. Interestingly,
alarm/defensive pheromones were the only experimentally
determined compounds used by eavesdropping associates
(Table 3). We also found that a single species may eavesdrop

on multiple pheromones emitted by their host. For example,
they may initially follow trail pheromones, then use recognition
pheromones and contextual cues to locate the queen, workers,
or brood (see Boxes 1B, 3C). We conclude that although there
is extreme diversity in the organisms that exploit ants (25
families or arthropods in 10 orders; Table 1), the stages of
successful exploitation (Figure 1) and host-finding mechanisms
are shared among many.

The extensive natural history of host ant species and their
associated parasitoids, predators, parasites, and myrmecophiles
provides the needed groundwork for hypothesis-driven studies
on chemical eavesdropping. The frequency and abundance
of ant associates varies among host lineages, perhaps due
to heritable traits that make some species more prone
to eavesdroppers than others. More research is needed to
identify these traits, and the specific compounds that natural
enemies exploit. Determination of the key compounds,
and their physiological and behavioral effects, will provide
a foundation for comparative studies (e.g., Ngumbi and
Fadamiro, 2015). Such studies will clarify the evolutionary
trajectories of specific compounds (Norman et al., 2017;
Brückner et al., 2018; Hamilton et al., 2018) and improve
our understanding of their perception by ant associates.
Finally, an evolutionary approach to ant chemistry and
eavesdropping will provide a basis for understanding how
eavesdroppers and other ant associates, can shape the evolution
of pheromone profiles.

Future Perspectives
Are Eavesdropping Coinfection Rates (i.e., Associate
Richness) Due to Predictable Host Traits?
Chemical communication structures communities in part by
mediating species interactions. Ants are key components of
most terrestrial ecosystems (Gao et al., 2016) and a tractable
model for exploring the details of chemical communication
systems. This review revealed that we know relatively little about
the basics of eavesdropping on ant pheromones, and far less
about its broader ecological consequences. We propose that ant-
specific traits, including their communication systems, influence
their susceptibility to eavesdropping associates. Inspired by
parasitological theory (Combes, 2001, 2005; Poulin, 2007), below
we outline some testable hypotheses that have the potential to
advance this field. We encourage an integrative approach applied
to multiple host-associate systems to account for confounding
variables, and we identify lineages where comparative research
is likely to be especially fruitful. We expect that DNA barcoding
(Baker et al., 2016) and network-based approaches will facilitate
more sophisticated studies, enhancing the understanding of
the ecological impact of these associations (reviewed in
Ivens et al., 2016).

We suggest that the traits of some ant species will determine
their susceptibility to diverse associates including parasitoids,
cleptoparasites, social parasites, myrmecophiles, and some
predators (Table 1). We tailored our trait-linked hypotheses to
address associate richness in the context of host-seeking strategies
that involve eavesdropping on ant chemical communication.
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Latitudinal gradient
Associate diversity varies with latitude. Given that ant species
richness increases from the poles to the tropics (Willig et al.,
2003; Economo et al., 2018), the potential for symbiotic
interactions should also increase. Few studies have addressed this
hypothesis in non-ant hosts (e.g., Salkeld et al., 2008; Torchin
et al., 2015); to our knowledge, no one has investigated this
pattern in ants despite prevalent lists of ant-nest associates
(Hölldobler and Wilson, 1990; Waller and Moser, 1990; Schmid-
Hempel, 1998; Navarrete-Heredia, 2001; Rettenmeyer et al.,
2011; Briano et al., 2012). Studies involving host species that
span broad latitudinal gradients would be ideal. Alternatively,
comparative studies of host lineages that contain species with
similar natural history traits may also prove useful. Key
prediction: Per-host associate richness is relatively higher in
tropical regions.

Diverse microhabitats
Associate diversity is affected by the structural complexity of
the host nest. Ant nests are compartmentalized into different
chambers containing the queen, brood, workers, food, and
detritus. For example, leaf-cutter ants have four kinds of nest
chambers (empty, garden filled, dirt/sand filled, and detritus filled
chambers) (Moser, 2006; Forti et al., 2017) whereas other species
may have 3-4 (entrance, queen, worker with brood, worker
without brood) (Heyman et al., 2017), providing vastly different
microhabitats. Ants often maintain unique chemical signatures
in different chambers, providing spatiotemporal guidance for
workers (Heyman et al., 2017). It seems likely that nest associates
use these chemical cues to differentiate among regions of the
complex nest structure. Refinement of associate niche axes based
on subtle but consistent differences in chemistry within an ant
nest presumably leads to increased associate richness. To test
this hypothesis, ant associate abundance can be evaluated in
comparative studies where similar species vary in nest complexity
(single chamber e.g., Acromyrmex vs. complex nests e.g., Atta).
Key prediction: As host nest structure increases, associate species
richness increases.

Long-lived large colonies/gregariousness
Ant associates have more opportunities to detect alarm, nest,
and trail pheromones from large, long-lived ant colonies. Eusocial
insects, specifically queens, have increased longevity compared
to solitary insects (Keller and Genoud, 1997) where some live
up to 30 years (Boxes 1, 2) (Hölldobler and Wilson, 1990).
These large old colonies can therefore accumulate numerous
associates, as they provide resources and homeostatic conditions
(Hughes et al., 2008). Territoriality behavior is often expressed
in workers of large colony species, and disputes with competing
hetero- and conspecifics are frequent (Adams, 2016). While
conflicts may cause the ants to emit alarm pheromones,
nest- and trail-marking pheromones allow species to partition
rival nests in space; together these pheromones leave large,
persistent colonies vulnerable to nest-seeking associates that
can eavesdrop on these chemical cues (Orr et al., 2003). To
test this hypothesis, ant associate abundance can be compared
in young vs. old or large vs. small colonies. Key prediction:

As host colony size and age increases, associate species
richness increases.

Nest migration/extensive trail systems
Species with frequent nest migration are more likely to be
discovered by ant associates. Army ants are constantly laying
trail pheromones (Oldham et al., 1994), and excrete volatile
alarm substances when in conflict (Brückner et al., 2018).
They do not construct permanent nests, but instead have
statary (i.e., stationary) and nomadic phases (Gotwald, 1995).
Regardless, if workers are leaving the bivouac to conduct
daily raids or the colony is migrating at night, trail and
alarm pheromones may enhance their vulnerability to new
associates. Eciton army ants and leaf-cutter Atta species are
known for their large colony sizes and numerous and diverse
nest associates; however, unlike army ants, Atta colonies are
stationary and maintain the same trail systems for years (Box 1)
(Kost et al., 2005). Future studies comparing Atta and Eciton
could test if repeated nest migrations or widespread trail
systems are responsible for their susceptibility to arthropod
associates. Key prediction: Life histories that involve frequent
nest migration with extensive trail systems have higher associate
species richness.

Nesting location
Nesting habit influences the conspicuousness of ant colonies
and their corresponding communication channels. Underground:
Many ant species nest underground where communication
systems are buffered by soil, thereby limiting associate encounter
rate. Leaf litter: The physical structure of leaf litter changes
almost daily and is three-dimensionally complex at small spatial
scales (Yanoviak and Kaspari, 2000). Thus, ant pheromone trails
are less reliable, short-lived and presumably harder to follow.
However, the transitory nature of the substrate causes species
to frequently move nest locations (also see Kaspari, 1996),
which can expose them to opportunistic parasites [e.g., phorids
attacking brood (Brown et al., 2017)]. Arboreal: Some arboreal
species construct single or multiple visually conspicuous nests
in trees (e.g., Wheeler, 1986; Adams and Longino, 2007). These
ant species lay trails on vines, branches, and trunks that are
exploited by cleptoparasite caterpillars (Dejean and Beugnon,
1996) and ants (Box 2 and Table 2) (Powell et al., 2014).
It is probable that the location of trail systems determines
the likelihood that they are exploited by eavesdroppers. For
example, an underground trail system presumably is less
likely to be detected by potential associates than an exposed
arboreal trail system. Future studies contrasting closely related
species with different trail strategies (e.g., arboreal versus
leaflitter dwelling Cyphomyrmex species) (Weber, 1941; Adams
and Longino, 2007) would be ideal to test this hypothesis.
Key prediction: Associate species richness correlates with nest
type and location.

Extant species-rich host lineage
The potential for host switching increases if the host lineage
has many species with similar pheromones (e.g., alarm, trail
pheromones, etc.) (Blum and Brand, 1972). While work centered
on host ant preference by various associates is important
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foundational research [e.g., Eucharitidae wasps (Murray et al.,
2013); Paussus ant-nest beetles (Moore and Robertson, 2014);
phorid flies (Mathis and Philpott, 2012; Chen and Fadamiro,
2018); social parasites (Lenoir et al., 2001; Buschinger, 2009)],
this hypothesis shifts the focus to the associate community
where network-based analyses will prove useful (Ivens et al.,
2016). In order to investigate this hypothesis, we must begin
with host lineages having (1) a well-resolved phylogeny, (2) a
well-studied communication system, and (3) numerous known
associates. Although a daunting task, research programs focusing
on ant lineages that contain pest species (e.g., Solenopsis,
Atta) would be most promising. Key prediction: Associate
richness is higher in host lineages with many closely related
extant species.
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