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Abstract
Ants communicate using a suite of chemicals with a level of sophistication that is inextricably linked to their ecological 
dominance. The fungus-growing ants have been the focus of chemical ecology studies for decades, especially the leaf-cutting 
ants. Some create long, conspicuous foraging trails to harvest fresh vegetation used to sustain large farming systems that feed 
millions of workers. However, of the ca. 250 fungus-growing ant species, most feed detritus rather than fresh material to 
their gardens, and colony sizes are tens to hundreds of workers. Colonies within the attine genus Cyphomyrmex use distinct 
methods of agriculture (i.e., yeast and lower fungus agriculture). We compared compounds found in five species from the 
yeast-growing Cyphomyrmex rimosus group (C. rimosus and C. salvini) and the lower agriculture Cyphomyrmex wheeleri 
group (C. costatus, C. longiscapus, C. muelleri). Compounds identified were compared with those reported in the literature 
and mapped onto the attine-ant phylogeny, and glands of origin suggested. There were 10 compounds across five species 
and two are known alarm compounds, 1-octen-3-o1 and 3-octanol. Of the six farnesenes detected, the most notable was the 
diversity of gaster-derived compounds in C. salvini and the high abundance of (3Z, 6E)-α-7-ethylhomofarnesene and α-6-
bishomofarnesene in the three C. wheeleri group species. We also found 2,5-dimethyl-3-isoamylpyrazine in the heads of 
yeast-growing species, an unexpected result because pyrazines are known trail substances in other attines. Our results expand 
our understanding of semiochemicals found in fungus-growing ants and provides a starting point to generate hypotheses for 
more extensive comparative studies.

Keywords  Cyphomyrmex · Fungus-farming ants · Alarm pheromone · Trail pheromone · Chemical communication · 
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Introduction

Ants (Hymenoptera: Formicidae) have over 75 glands pro-
ducing chemicals that guide their social organization, con-
tributing to their ecological dominance around the world 
(Jackson and Morgan 1993; Billen 2009). Chemicals provide 
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advantages over visual signals, enabling information transfer 
in dark nest cavities that can linger in the environment or dis-
sipate quickly depending on their volatility (Morgan 2008). 
Semiochemicals (i.e., allomones and pheromones) are used 
in complex communication systems that influence territorial 
interactions (Salzemann et al. 1992; Cammaerts and Cam-
maerts 1998), nestmate recognition systems (Sainz-Borgo 
et al. 2013; Norman et al. 2014), foraging recruitment (Van-
der Meer et al. 1988) and alarm signaling (Jackson and Mor-
gan 1993; Morgan 2008). The importance of these diverse 
functions illustrate the complexity of social organization and 
it is therefore not surprising that ants have evolved diverse 
glands to produce such compounds (reviewed in: Billen 
2011).

Many compounds used for communication and defense 
have predicable source glands among seemingly distantly 
related ant species, but the conservation of semiochemicals 
within genera is less known. Functional roles present an 
additional layer, as some signals depend on compounds from 
multiple glands (Billen 2006; Morgan 2008). For instance, 
the secondary alcohols and corresponding ketones of ant 
mandibular glands are primarily responsible for the produc-
tion of alarm pheromones, whereas long-chain hydrocarbons 
stored in the postpharyngeal gland (PPG) and produced in 
the Dufour’s gland tend to facilitate nestmate recognition 
(Cammaerts et al. 1981; Jaffe and Marcuse 1983; Morgan 
2008). Trail-marking chemicals and several alarm phero-
mones are also derived from abdominal glands (e.g., post-
pygidial, Dufour’s, and venom glands) and are frequently 
made of linear and terpenoid hydrocarbons also known as 
farnesenes (Blum et al. 1964; Attygalle and Morgan 1984; 
Vander Meer et al. 1988). Furthermore, metapleural glands 
produce acids with antimicrobial properties that can pro-
tect the ants from entomopathogens but may also have a 
communicative function (Morgan 2008; Yek and Mueller 
2011). To summarize, all ant species rely on chemical com-
munication and most biosynthesize a remarkable diversity 
of compounds.

The fungus-growing ants (Formicidae: Myrmicinae: 
Attini: subtribe Attina; hereafter “attine” ants) comprise a 
monophyletic lineage that farms fungus for food (Mehdi-
abadi and Schultz 2009; Ward et al. 2015). Five key farm-
ing practices can be mapped onto the attine phylogeny: (1) 
lower agriculture, (2) yeast agriculture, (3) coral fungus 
agriculture, (4) higher agriculture, and (5) leaf-cutter agri-
culture (Schultz and Brady 2008). The genus Cyphomyrmex 
occupies a phylogenetically intermediate position between 
other lower fungus-growing ant genera and the “higher” 
attines (including the leaf-cutting ants). This is particu-
larly interesting because Cyphomyrmex species from the 
C. wheeleri group (four species) practice lower agriculture 
and species from the C. rimosus group (19 species) prac-
tice yeast agriculture (Mehdiabadi et al. 2012; Albuquerque 

2014). Cyphomyrmex species also exhibit defense behaviors 
ranging from crypsis (i.e., playing dead when disturbed) to 
aggressive attack (Kweskin 2004; Adams and Longino 2007; 
Adams et al. 2015). Thus, one might expect these species to 
produce correspondingly diverse semiochemicals to medi-
ate these varied collective farming and defensive behaviors.

The chemical ecology of fungus-growing ants has been 
traditionally focused on the most derived leaf-cutter spe-
cies due to their pest status and large-scale farming sys-
tems. More recently, several compounds have been found 
to be conserved across the attine phylogeny, in genera that 
diverged tens of millions of years ago (e.g., Atta, Apter-
ostigma, Trachymyrmex, and Sericomyrmex (Crewe and 
Blum 1972; Adams et al. 2012; Hogan et al. 2017; Norman 
et al. 2017). Like other ant species, attines use semiochemi-
cals in nestmate recognition (e.g., cuticular hydrocarbons) 
(Martin and Drijfhout 2009; Neupert et al. 2018), trail fol-
lowing (e.g., farnesenes, pyrazines) (David Morgan 2009 
and references therein), nest marking (e.g., long-chain 
hydrocarbons) (Salzemann et al. 1992), and alarm behav-
ior (e.g., 3-octanol) (Crewe and Blum 1972; Norman et al. 
2017). There is a clear gap in knowledge surrounding the 
majority of attine-derived semiochemicals and compara-
tive work is greatly needed. It is likely that Cyphomyrmex-
derived semiochemicals are shared among various attines 
despite their divergent farming practices, but this has yet 
to be tested.

We described the chemical compounds found in the head 
and abdomen (i.e., gaster) of five Cyphomyrmex species and 
propose their glandular origins. To our knowledge, of the 
23 extant Cyphomyrmex species (Antweb 2018), the glan-
dular secretions of only C. rimosus have so far been studied 
(Crewe and Blum 1972). We place our findings in an evo-
lutionary context to highlight the rarity and convergence of 
some compounds and discuss how farnesenes—likely used 
as trail pheromones—separate the C. rimosus group (yeast 
agriculture) and the C. wheeleri group (lower “mycelium” 
agriculture). Cyphomyrmex have great potential for high-
lighting possible mechanisms enabling transitions from yeast 
agriculture and lower agriculture to larger scale farming sys-
tems that arose over millions of years of attine evolution.

Materials and methods

Sample collections

In May 2015 and 2017, Cyphomyrmex colonies were col-
lected from four sites in Parque Nacional Soberanía Forest, 
Panamá. Three were along Pipeline Road (Rio La Seda: N 
09.16330, W 79.39605; 16E creek: N 9.16379, W 79.74244; 
8W creek: N 9.16093, W 79.75181) and one on Plantation 
Road (N 09.15277, W 79.73680), the latter located southeast 
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across the Río Chagres. Compounds were extracted from 
freshly collected colonies of five Cyphomyrmex species [i.e., 
C. rimosus (2 colonies), C. salvini (6 colonies), C. costatus 
(3 colonies), C. muelleri (9 colonies), and C. longiscapus (5 
colonies)] in HPLC grade methanol solvent (1–11 individu-
als per vial). Species were identified using keys of (Kempf 
1965; Snelling and Longino 1992) and vouchers were depos-
ited at the Smithsonian Institution National Museum of Nat-
ural History, Washington DC. Whole ants or trisected ants, 
dissected into head, mesosoma (thorax), and gaster (abdo-
men), were placed into separate glass vials with 50–200 µL 
of solvent (Table 1). The mesosoma region did not yield 
volatile compounds and was therefore not considered further 
in the study. To minimize contamination between the ant 
body parts, the forceps were washed in ethanol, methanol, 
and pentane after each cut. Trisections of 1–3 individuals per 
colony were used to identify the body regions where com-
pounds were most abundant. Whole-body extracts confirmed 
the ubiquity of trace compounds detected. Extractions of one 
species with ants from the same or different colonies are 
described as “replicate samples” hereafter. Reported com-
pounds were found in at least trace amounts in two or more 
extracts of workers of the same species.

Analysis of Cyphomyrmex‑derived compounds

Samples of extracts were analyzed by THJ and HAB at the 
Virginia Military Institute with gas chromatography–mass 
spectrometry (GC–MS) using a Shimadzu QP-2010 GC–MS 
equipped with an RTX-5, 30 m × 0.25 mm i.d. column. The 
carrier gas was helium with a constant flow of 1 ml/min. 
The temperature program was from 60 to 250 °C changing 
10 °C/min and held at the upper temperature for 20 min. The 
mass spectrometer was operated in EI mode at 70 eV, and 
scanning was set to 40 to 450 AMU at 1.5 scans/s. Peaks on 
chromatograms were identified by database search (NIST 
Mass Spectral Data base, V.2, US Department of Com-
merce, Gaithersburg, MD), published literature spectra, and 
by direct comparison with commercially available authentic 
samples. Single ion searches were necessary in the cases 
where the signals were barely above the baseline in the chro-
matogram (electronic supplementary material 1; Fig. 1).

Results

Among the five Cyphomyrmex species studied, we detected 
and identified four head-derived compounds (Table 2), six 
putative trail-following pheromones (Table 3), and vari-
ous alkenes (C11–C17) (Fig. 1). The “mushroom alcohol” 
1-octen-3-ol (octenol) was present in all Cyphomyrmex 
species, whereas 3-octanol and nonanal were found in all 
species except C. rimosus. Cyphomyrmex salvini samples 

contained 2,5-dimethyl-3-isoamylpyrazine (4) in the whole-
body and head samples. This compound was also detected 
in a whole ant sample of C. rimosus (RMMA150504-04). 
1-octen-3-ol, 3-octanol, and nonanal were identified using 
authentic samples from Sigma-Aldrich (SA CAS# 3391-
86-4, 589-98-0, and 124-19-6 respectively). 2,5-Dimethyl-
3-isoamylpyrazine was determined by comparison to the 

Table 1   Collection information

Collection codes contain the collector’s initials, date of collection 
(year/month/day), and colony number. Collector’s initials: Rachelle 
M.M. Adams (RMMA), Natalie M. Hamilton (NMH), Conor T. 
Hogan (CTH), Jonathan Z. Shik (JZS), Jacob Spile (JS), and Bonnie 
M. Wall (BMW). Sample type: Whole-body sample (W), Head (H), 
and Gaster (G)

Species Collection code Collection loca-
tion

Sample type

C. rimosus RMMA150504-
04

Gamboa Forest W, H, G

RMMA170506-
02

16E W

C. salvini JS150509-05 Rio La Seda W, H, G
JZS150525-01 16E W, H, G
JS150525-01 16E W, H, G
RMMA170520-

01
Rio La Seda W

RMMA170222-
01

8W W

RMMA170527-
02

8W W

C. costatus JS150509-01A Rio La Seda W, H, G
RMMA150517-

05W
Plantation Rd. W, H, G

RMMA170513-
02

16E W

C. muelleri CTH170511-02 16E W
NMH170515-03 16E W
NMH170520-01 Rio La Seda H, G
NMH170520-02 Rio La Seda W
RMMA170515-

03
Rio La Seda W

RMMA170527-
01

8W W

RMMA170527-
04

8W W

RMMA170527-
05

8W W

C. longiscapus RMMA170527-
07

8W W

BMW150517-05 Plantation Rd. W, H, G
NMH170515-01 16E W, H, G
NMH170515-04 Rio La Seda W
RMMA170515-

01
Rio La Seda W

SS150523-02 16E W, H, G
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NIST Library 367,291 and published spectra (Xu et al. 
2018).

Extracts of the gasters of three C. wheeleri group spe-
cies (C. costatus, C. longiscapus, and C. muelleri) con-
tained sesquiterpenoid farnesenes and their homologs as 

major hydrocarbon components, while C. rimosus and C. 
salvini had these compounds in low amounts (≤ 10%). The 
gas chromatograms of the extracts of C. longiscapus and C. 
muelleri were indistinguishable, revealing the presence of 
two compounds in a 1:10 ratio. The first eluting compound 

Fig. 1   Cyphomyrmex chemicals compared across a sampling of the 
attine phylogeny. Compounds marked with numbers correspond to 
the structures shown at top. Shading of each square represents the 
relative quantities of compound found in the head or gaster: dark 
gray (major component > 60%), light gray (minor component < 60%), 
white (5–10%), and “asterisk” (detected). Data from the literature 
were added for comparison and are not an exhaustive list of com-

pounds found in these species. If a compound was found in other 
studies this is indicated by a “plus”. Species relationships inferred 
from the phylogeny of Branstetter et  al. (2017). Positons of species 
not included in the Branstetter et  al. (2017) study are approximated 
based on morphological similarities. The C. rimosus group (yeast 
agriculture) and the C. wheeleri group (lower agriculture) are labeled 
at the appropriate nodes

Table 2   Relative peak area 
average of head-derived 
compounds and retention data 
in minutes

Numbers correspond to compounds indicated in Fig. 1
n number of colonies sampled and rs number of replicate samples (rs)

Compound # Peak area average ± SE

Species (n/rs) 1 2 3 4

C. rimosus (1/5) – – – –
C. salvini (3/30) 22.8 ± 0.91 5.75 ± 1.59 – 51.9 ± 10.7
C. costatus (2/21) 15.5 ± 0.75 20.2 ± 5.75 14.1 ± 4.2 –
C. muelleri (1/1) 25.2 19 14.2 –
C. longiscapus (3/18) 32.9 ± 8.61 32.8 ± 4.52 13.9 ± 3.44 –
Retention time 10.2 10.6 12.86 16.36
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had a parent ion at m/z = 204 and a mass spectrum that 
matched (3Z, 6E)-α-farnesene (5) in the NIST Library 
141,112. The second compound had a mass spectrum with 
parent ions at m/z = 218, which suggested a homofarnesene. 
Hydrogen bubbled through a small portion of the extract 
containing < 1 mg of PtO2 and as expected, the minor com-
ponent had a mass spectrum that matched that reported for 
2,6,10-trimethyldodecane, farnesene (NIST Library 62,132). 
After hydrogenation, the mass spectrum of the major com-
ponent had M+ = 226 (C16H34), and significant fragments 
at m/z = 197 (M-29) and 111, and it matched that reported 
for 2,10-dimethyl-6-ethyldodecane (Attygalle and Morgan 
1982; Compound 2). Upon closer examination of the origi-
nal mass spectrum, the ion at m/z = 133 (22) and the rest 
of the spectrum matched the mass spectrum reported for 
(3Z, 6E)-α-7-ethylhomofarnesene (6). We have provided 
the mass spectra of the peaks in electronic supplementary 
material 1; Fig. 2. Other possibilities for the double-bond 
geometries and positions were ruled out from mass spectra 
reported in the literature. Accordingly, the (E, E) isomer is 
reported to have a noticeable ion at m/z = 137, which was 
not observed, along with the ion at m/z = 133. Likewise, β-7-
ethylhomofarnesene is reported to have noticeable ions at 
m/z = 147 and 134 which were not present in the spectrum 
of (6) (Jackson et al. 1990).

In C. costatus, a similar gas chromatogram was observed 
except that the farnesenes were one-carbon and two-carbon 
homologs of (3Z, 6E)-α-farnesene (5). The minor compo-
nent had a mass spectrum and retention time identical to 
those of (3Z, 6E)-α-7-ethylhomofarnesene (6) in C. long-
iscapus and C. muelleri, while the major component α-6-
bishomofarnesene (7) had a mass spectrum with a parent 
ion at m/z = 232, which suggested a bishomofarnesene. 
Hydrogen was bubbled through a small portion of the extract 
containing < 1 mg of PtO2 and after hydrogenation, and the 
minor component had M+ = 226 and significant fragments 
at m/z = 197 (M-29) and 111. This matched 2,10-dimethyl-
6-ethyldodecane reported above from the hydrogenation of 
the C. longiscapus extract. The major component of this 
mixture had M+ = 240 (C17H36) and significant fragments 

at m/z = 211(M-29) and 111. This suggested a saturated 
hydrocarbon with an internal ethyl group and the additional 
carbon on one end of the molecule, so that its precursor, 
α-6-bishomofarnesene (7) would be a one-carbon homolog 
of (3Z, 6E)-α-7-ethylhomofarnesene (6). We have provided 
the mass spectrum for compound (7) in electronic supple-
mentary material 1; Fig. 3, as to the best of our knowledge, 
this compound has not been previously reported.

In C. rimosus and C. salvini, where the farnesenes appear 
in low amounts, two bishomofarnesenes (8 and 9) and one 
trishomofarnesene (10) had mass spectra that matched those 
published in Ali et al. (2007). There the mass spectrum of 
“bishomofarnesene-2” (Ali et al. 2007: Fig. 1, spectrum 
a) matched that of (8) exactly, while the mass spectrum of 
“bishomofarnesene-1” (Ali et al. 2007: Fig. 1, spectrum a) 
matched that of (9) exactly. Similarly, the mass spectrum of 
“trishomofarnesene-1” (Ali et al. 2007: Fig. 5, spectrum b) 
matched that of (10) exactly. Bishomofarnesene-2 (8) was 
the only terpenoid compound found in C. rimosus. In con-
trast, C. salvini was found to have small amounts of (5, 6, 
8, 9, and 10).

Discussion

Our results indicate that several chemicals are conserved 
within the genus Cyphomyrmex, but also occur in other 
terminal attine taxa (Fig. 1). All Cyphomyrmex species 
in our study contain 1-octen-3-ol (1) in minor (< 60%) or 
major (> 60%) amounts (Fig. 1). The function is yet to be 
determined in ants, but 1-octen-3-ol (1) is also found in the 
distantly related species, Apterostigma manni (Hogan et al. 
2017) and Trachymyrmex cornetzi (Norman et al. 2017) 
function as a repellent in millipedes (Ômura et al. 2002). 
All species excluding C. rimosus have 3-octanol (2). This 
compound induces strong mandible-opening response in 
Acromyrmex echinatior and acts as an attractant in Myrmica 
ants (Cammaerts et al. 1981; Norman et al. 2017) and there-
fore may function as an alarm pheromone in Cyphomyrmex 
species. Nonanal (3) has a citrus odor and small amounts 

Table 3   Relative peak area 
average of gaster-derived 
farnesenes and retention data in 
minutes

Numbers correspond to compounds indicated in Fig. 1 and the number of carbons is in parentheses
n number of colonies sampled and rs number of replicate samples (rs)

Compound # (carbons) Peak area average ± SE

Species (n/rs) 5 (C15) 6 (C16) 7 (C17) 8 (C17) 9 (C17) 10 (C18)

C. rimosus (2/8) – – – 26.4 ± 0 – –
C. salvini (6/53) 5.833 ± 0.68 6.6 ± 0.76 – 25.75 ± 3.28 9.33 ± 1.06 13.28 ± 1.82
C. costatus (2/15) – 16.2 ± 0.3 63.5 ± 2.8 – – –
C. muelleri (9/35) 6.17 ± 0.67 72.2 ± 01.56 – – – –
C. longiscapus (5/34) 7.97 ± 1.33 68.2 ± 3.27 – – – –
Retention time 18.738 19.575 19.654 19.769 20.015 20.698
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have been found in the mandibular glands of Acromyrmex 
and Atta species (Hughes et al. 2001; Francelino et al. 2006; 
Norman et al. 2017). Trachymyrmex fuscus also produces 
nonanal (3) along with an array of acids in its metaplural 
gland (Vieira et al. 2012). Behavioral studies are needed to 
determine pheromonal function of 1-octen-3-ol, 3-octanol, 
and nonanal in the Cyphomyrmex genus.

Additionally, 2,5-dimethyl-3-isoamylpyrazine (4) was 
detected in whole ant and head samples of C. salvini and 
in the heads of C. rimosus, but never in the gaster-only 
samples, suggesting this compound could originate in the 
mandibular glands. 2,5-dimethyl-3-isoamylpyrazine (4) 
has also been found in a bacterial associate of Atta sexdens 
rubropilosa (Silva-Junior et al. 2018) and in the mandibu-
lar glands of the distantly related Anochetus kempfi and A. 
mayri (Formicidae: Ponerinae: Ponerini) (Jones et al. 1999). 
Similar pyrazines have been reported from the mandibular 
glands of Iridomyrmex (Formicidae: Dolichoderinae) (Cav-
ill et al. 1984; Morgan et al. 1999 and references therein). 
However, our result was unexpected because pyrazines are 
known to serve as trail substances in attine ants (Cross et al. 
1979; Evershed et al. 1982; Vander Meer et al. 1988; Mor-
gan 2008). To our knowledge, farnesenes (5–10), found in 
the Cyphomyrmex species sampled, have not been found in 
other fungus-growing ant species (Fig. 1; Table 2). However, 
(E,E)-α-farnesene was reported in whole-body samples of 
two Trachymyrmex species (i.e., T. n. sp. nr. papulatus and T. 
cf. zeteki) and (Z-β)-farnesene was found in gaster samples 
of T. cf. zeteki sp 2 (Adams et al. 2012). Farnesenes were 
also found in the Dufour’s gland of other Myrmicinae ant 
genera (e.g., Solenopsis, Pheidole) suggesting this may be 
the source gland (Vander Meer et al. 1988; Ali et al. 2007). 
Although surveyed by Adams et al. (2012), no farnesenes 
were detected in Trachymyrmex opulentus, Trachymyrmex 
cf. isthmicus, Trachymyrmex cornetzi, Trachymyrmex bugn-
ioni and Trachymyrmex septentrionalis suggesting there is 
variability in the presence of farnesenes in a single genus, 
although this is not true for Cyphomyrmex according to our 
study.

The occurrence and abundance of farnesenes distinguish 
the C. rimosus group from the C. wheeleri group. The gaster 
extracts of the two yeast-growing species (i.e., C. rimosus 
and C. salvini) contain compounds in very small quanti-
ties, while farnesenes are major components in the three C. 
wheeleri group species. Additionally, the farnesenes in the 
C. wheeleri group are comprised of (3Z, 6E)-α-farnesene 
(5) and what appear to be its homologs, (3Z, 6E)-α-7-
ethylhomofarnesene (6) and the bishomofarnesene (7). On 
the other hand, the two species in the C. rimosus group 
have small amounts of farnesene homologs reported in 
abundance in Pheidole species (Ali et al. 2007), compound 
(8) in the case of C. rimosus, and (8, 9, and 10) from C. 
salvini, which also has small amounts of (5 and 6). While 

the farnesenes detected in the two species groups examined 
here are different, we cannot conclude that the overall pat-
tern of Cyphomyrmex-derived farnesenes is taxonomically 
informative, but it is possible that a pattern may emerge with 
more sampling.

While a diversity of farnesenes is present throughout 
the Cyphomyrmex clade, C. salvini has the widest range of 
compounds—albeit in low quantities. Larger colonies call 
for more caste specialization (Ferguson-Gow et al. 2014), 
therefore complex signals may be useful for refined com-
munication between nestmates (Beckers et al. 1989; Jaffe 
et al. 2012). The mycelium-growing species have small 
colonies (ca. 20–100 individuals) and are often solitary for-
agers (Adams unpublished; Ferguson-Gow et al. 2014). In 
contrast, some yeast-growing species can have colonies with 
over 100 (e.g., C. salvini) to over 4000 individuals (e.g., C. 
cornutus) and have long foraging lines (Adams unpublished; 
Adams and Longino 2007; Ferguson-Gow et  al. 2014). 
Cyphomyrmex salvini is thought to be a complex of sibling 
species with 6–7 morphospecies in Costa Rica alone (Ant-
Web). Future work focused on farnesenes in the C. salvini 
complex may reveal species-specific patterns that correlate 
with life history traits (e.g., colony size and foraging strat-
egy) and function.

Overall, our results indicate a remarkable diversity of 
compounds among the Cyphomyrmex species. Many com-
pounds are conserved within the genus Cyphomyrmex and 
found in a diversity of attine species. Due to pheromone 
parsimony, where chemical function may not be preserved 
across species, careful behavioral analyses are necessary 
to determine a chemical’s function (Jackson and Morgan 
1993). Because ants spread compounds all over their bodies 
when grooming, glandular sources can be difficult to detect 
(Richard et al. 2007). The evolution of exocrine chemicals 
within fungus-growing ants has the potential to be specific 
to the type of agriculture utilized by the ant species (Meh-
diabadi et al. 2012), but this remains to be broadly tested. 
Each year, new fungus-growing species are being discovered 
and their natural history described. Focused work integrating 
behavior, semiochemicals, and phylogenetic relationships 
will provide a clearer understanding of the complexities of 
these fascinating ants.
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