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The Malay Archipelago and the tropical South Pacific (hereafter the Indo-Pacific region) are considered biodi-
versity hotspots, yet a general understanding of the origins and diversification of species-rich groups in the
region remains elusive. We aimed to test hypotheses for the evolutionary processes driving insect species di-
versity in the Indo-Pacific using a higher-level and comprehensive phylogenetic hypothesis for an ant clade
consisting of seven genera. We estimated divergence times and reconstructed the biogeographical history of ant
species in the Prenolepis genus-group (Formicidae: Formicinae: Lasiini). We used a fossil-calibrated phylogeny to
infer ancestral geographical ranges utilizing a biogeographic model that includes founder-event speciation.
Ancestral state reconstructions of the ants' ecological preferences, and diversification rates were estimated for
selected Indo-Pacific clades. Overall, we report that faunal interchange between Asia and Australia has occurred
since at least 20-25 Ma, and early dispersal to the Fijian Basin happened during the early and mid-Miocene (ca.
10-20 Ma). Differences in diversification rates across Indo-Pacific clades may be related to ecological preference
breadth, which in turn may have facilitated geographical range expansions. Ancient dispersal routes suggested
by our results agree with the palaeogeography of the region. For this particular group of ants, the rapid or-
ogenesis in New Guinea and possibly subsequent ecological shifts may have promoted their rapid diversification
and widespread distribution across the Indo-Pacific.

1. Introduction

The islands of the Pacific Ocean constitute a relatively small amount
of land area, but they harbour an extraordinary number of endemic taxa
(Keppel et al., 2009). Given the complexity of their biogeographical
history, multiple scenarios for the origin of the region's vast diversity
have been proposed (Gillespie et al., 2008; Keppel et al., 2009; Lohman
et al.,, 2011; Stoddart, 1992), but evaluations of them incorporating

robust phylogenetic inferences, probabilistic biogeography analyses,
and ecological data have been scarce, especially as applied to species-
rich groups (but see Gressitt, 1984; de Boer & Duffels, 1996; Sharma &
Giribet, 2012; Clouse et al., 2015; Economo et al., 2015b). In this study,
we aim to understand the evolution of the ants within the Prenolepis
genus-group (Formicinae: Lasiini) (LaPolla et al., 2010a; Ward et al.,
2016) as a model for studying historical biogeography in the Malay
Archipelago and the tropical South Pacific (hereafter the TSP; Fig. 1).
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Fig. 1. Map of the Indo-Pacific region. Red stars represent this study's sampling localities. Locality information including GPS coordinates, elevation, and brief habitat descriptions are

presented in Table A.1 in Appendix A.

These ants are geographically widespread, and their lineages exhibit a
broad array of ecological preferences. They are a ubiquitous component
of tropical forests, they occupy all types of terrestrial habitats in the
region, and some species have become invasive.

Although various palaeogeographical reconstructions have been
proposed for the region (Baldwin et al., 2012; Hall, 2013; Lohman et al.,
2011), most models agree that there was a significant rise of subaerial
(above water) land and orogenic activity within the past 5-10 Ma.
However, it is unclear whether there was ever a chain of volcanic ac-
tivity and possible archipelago connecting the Sunda Shelf in Southeast
(SE) Asia and the Sahul Shelf, which includes Australia and New Guinea
(Hall, 2013; Lohman et al., 2011). If such a gateway did not exist, then
dispersal of many non-marine taxa between Asia and Australia across
Wallace’s Line and the Wallacea region (the islands between Borneo
and New Guinea) would have been limited during most of the Miocene
(i.e., 10-25 Ma); however dated molecular phylogenies of several ver-
tebrate groups strongly suggest faunal interchange across Wallacea
throughout the Miocene epoch (Cibois et al., 2014; Georges et al., 2014;
Jonsson et al., 2011; Mitchell et al., 2014). Molecular chronograms of
insect taxa, nonetheless, largely agree with a later biotic exchange
scenario, around the late Miocene and Pliocene (i.e., < 15Ma; Balke
et al., 2007; Condamine et al., 2013, 2015; Miiller et al., 2013; Tanzler
et al., 2014; but see, Economo et al., 2015b), but even among ar-
thropods there are unexplained dispersal patterns (Clouse and Giribet,
2007). Not only is the existence of such a Miocene land bridge unclear,
but so is its possible extent, location, and duration.

The island of New Guinea is a major centre of biotic endemism in
the region. It is believed that arthropod diversification there has oc-
curred since the early Miocene (ca. 20-25 Ma; de Boer & Duffels, 1996;
Sharma & Giribet, 2012; Miiller et al., 2013), accelerating during the
past 5-10Ma, concurrent with the orogeny of its Central Range
(Toussaint et al., 2014). Although the tectonic history of New Guinea is
complex (Baldwin et al., 2012), broadly speaking there are two com-
peting hypotheses for the emergence of its land: (1) an early Miocene
islands group along the northern edge, so-called the proto-Papuan ar-
chipelago (Hall, 2002; Jgnsson et al., 2011; Lohman et al., 2011), and
alternatively, (2) an Oligocene Papuan peninsular orogeny (ca.
30-35Ma) restricted to southeastern New Guinea (van Ufford and
Cloos, 2005). These two models make contrasting predictions about the
first colonization events of New Guinea as either taking place on the

northern or southeastern sides of the island.

In the case of oceanic islands, it was hypothesized that most of the
extant TSP archipelagos emerged during the late Miocene and Pliocene
(ca. 5-10 Ma; Gillespie et al., 2008; Gillespie & Clague, 2009), but
volcanic activity has been reconstructed since at least the Oligocene (ca.
30Ma) (Neall and Trewick, 2008). Although palaeogeographic re-
constructions depict ancient Melanesian volcanic arcs extending from
New Guinea into the Fijian Basin (Hall, 2002), subaerial land may have
been ephemeral (Hall, 2013). One hypothesis, the Vitiaz Arc Model,
suggests a relatively continuous archipelago extending throughout
proto-Papua, the Solomon Islands, Vanuatu and Fiji (Ewart, 1988;
Rodda, 1994). Biogeographically, this scenario predicts early stepping-
stone dispersals to the southwest Pacific, which may have occurred
until the disruption of the island arc at about 10 Ma (Hall, 2002). Some
of these earlier colonizers might never have faced extinction because
certain islands in Vanuatu and Fiji remained subaerial since the early
Miocene (ca. 25 Ma; Sarnat & Economo, 2012). In fact, time-calibrated
insect phylogenies strongly support the idea of a mid-Miocene coloni-
zation of Fiji from either New Guinea or SE Asia (Balke et al., 2007;
Economo et al., 2015a; Lucky and Sarnat, 2010; Sarnat and Moreau,
2011).

Apart from the geological processes that might have facilitated the
colonization of Melanesia, including New Guinea, and the TSP, species
diversification and distribution across islands may have been driven
locally by ecological processes, as suggested by recent advances in
Island Biogeography theory (Whittaker et al., 2008). The expansion/
contraction phases, or the taxon cycle hypothesis, is a classic, influen-
tial model that attempts to explain population differentiation and
geographic ranges over time in an ecological framework (Ricklefs and
Cox, 1972; Wilson, 1961, 1959). In the expansion stage of the cycle,
species colonize nearby archipelagos (geographical expansion) fa-
cilitated by shifts in habitat preference towards marginal habitats such
as island coasts (ecological expansion). The following contraction
stages involve phenotypic and genetic differentiation of populations
across islands, extinction of small unspecialized populations, and the
origin of single-island endemics. Although biogeographic data and
phylogenetic evidence have partially given support to the taxon cycles
(Economo et al., 2015b; Economo and Sarnat, 2012; Jgnsson et al.,
2014; Ricklefs and Bermingham, 2002), the complexity of the hypoth-
esis has hindered its comprehensive evaluation. For instance, other
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factors have been proposed to explain species' expansion and contrac-
tion phases, such as recent climatic fluctuations, character-displace-
ment, and disparate dispersal abilities across lineages (e.g., Pregill &
Olson, 1981; Liebherr & Hajek, 1990; Losos, 1992).

Phylogenetically, the taxon cycle hypothesis predicts the repeated
evolution of widespread lineages exhibiting ecological shifts (Ricklefs
and Cox, 1972). Lineages in the expansion phase could give rise to
daughter lineages adapted to marginal habitats, thus, the expansion
phase may also be represented by entire clades having wider ecological
preferences. However, a potential link between the expansion phase
and phylogenetic diversification of Melanesian insects remains to be
tested (but see, Sarnat & Moreau, 2011; Economo & Sarnat, 2012;
Economo et al., 2015b). If expansion phases and phylogenetic diversi-
fication are indeed correlated, we would expect increased diversifica-
tion rates within certain clades due to expanded ecological opportu-
nities.

In this study, we test four pairs of competing hypotheses that col-
lectively inform our understanding of diversity dynamics in the Indo-
Pacific region:

1. Asia-Australia dispersal in the Miocene

(a) Dispersal between SE Asia and Australia was mostly post-late
Miocene due to a lack of subaerial land before 5-10 Ma.

(b) Older colonization events of terrestrial lineages between these
two areas were possible since at least the early Miocene, either
through overwater dispersal or via significant emergent land not
accounted for by the current palaeogeographic reconstructions.

2. Colonization of New Guinea

(a) The first colonization of—and diversification in—New Guinea
was in a proto-Papuan archipelago on the northern edge of the
island.

(b) The first emergence, colonization, and diversification in New
Guinea occurred in the present-day Papuan peninsula on the
southeastern part of the island.

3. Colonization of East Melanesia

(a) Ancient colonization of east Melanesia (Vanuatu and Fiji) was
facilitated by the hypothesized ancient island chain associated
with the Vitiaz arc, which may have lasted until about 10 Ma.

(b) Colonization of Vanuatu and Fiji occurred during the Pliocene
(< 5Ma) as a consequence of substantial emergence of land
above sea.

4. Range expansion, shifts in ecological preference, and radiation

(a) Lineages go through concordant shifts in ecological preference
and geographical range expansion, which may result in in-
creased phylogenetic diversification rates.

(b) Range expansions are not linked to niche shifts, and diversifi-
cation remains constant over time, thus, the extant species di-
versity in the region is time-dependent (i.e., older clades contain
more species diversity).

To test these hypotheses, we reconstruct a dated molecular phylo-
geny of seven ant genera in the Prenolepis genus-group, calibrated using
fossil data and secondary constraint, and infer its ancestral geo-
graphical ranges, habitat preferences, and diversification rates on spe-
cies-rich Indo-Pacific clades.

2. Material and methods
2.1. Sample and dataset acquisition

The Prenolepis genus-group is monophyletic (Blaimer et al., 2015;
LaPolla et al., 2010a) and has recently been classified within the tribe
Lasiini based on phylogenomic data (Ward et al., 2016). The group has
a worldwide distribution, occurring mostly in tropical and subtropical
regions. In the Malay Archipelago, TSP, and Australia, the focal study
area, the group consists of 35 described species (AntWeb, 2016). We
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collected ants throughout the study region over a 10 year period to
obtain the most geographically and taxonomically extensive sampling
of species as possible, including undescribed and cryptic diversity. We
sampled ca. 470 specimens that represent 73 putative species dis-
tributed across our focal study area (Fig. 1; Table A.1 in Appendix A).
For most of these specimens (91%; see Table A.1), we sequenced the
barcoding region (659 bp) of the mitochondrial COI gene. Furthermore,
for the phylogenetic analyses, we expanded the molecular dataset for
selected specimens to include at least one specimen per species. This
expanded aligned dataset consists of 3389 bp from six protein-coding
genes: one mitochondrial (COI) and five nuclear gene markers (CAD,
EF-1aF1, EF-1aF2, LWR, and wingless). We retrieved sequences from
GenBank of outgroup taxa (tribe Lasiini: Cladomyrma, Lasius, Myrme-
cocystus) (Ward et al., 2016) and all available sequences for 63 taxa
within the Prenolepis genus-group distributed around the world. All
voucher specimens were deposited in the Melanesian Ant Collection,
Biology Centre of the Czech Academy of Sciences, with selected du-
plicates deposited in the MCZ (Museum of Comparative Zoology,
Cambridge, MA, USA).

Species determination was primarily based on morphology, whereas
molecular divergences were used to evaluate putative species bound-
aries and to detect cryptic species with substantial genetic variation. We
used the program bPTP (Zhang et al., 2013) to delimit species based on
branch length information. The multi-species coalescent model could
not be utilized because of computational limitations, convergence and
mixing problems when analyzing our dataset consisting of multiple
genera (analyses not shown) (Yang and Rannala, 2010). However, the
species assignments by bPTP and programs based on the multi-species
coalescent, such as BP&P, may be similar in some cases (Toussaint et al.,
2015). As input for the program bPTP, we used a maximum likelihood
tree with branch lengths representing number of substitutions as in-
ferred by RAXML v8.0 (Stamatakis, 2014). We used a multi-locus da-
taset, with 164 ingroup specimens having unique COI haplotypes and at
least one nuclear marker sequenced. The molecular species delimitation
analysis was conducted through the bPTP web server (http://species.h-
its.org/ptp/), having the following settings: 500,000 MCMC genera-
tions; thinning by a factor of 100; and 25% burnin.

2.2. Phylogenetic analyses

Ingroup members of our molecular dataset consisted of Prenolepis
genus-group specimens from our focal study area and other regions in
the world, and included in total 176 specimens from 124 species,
having at least 4 out of 6 gene fragments sequenced (level of matrix
completeness ca. 90%). Based on Bayes factors calculated by the step-
ping-stone sampling approach in MrBayes v3.2.2 (Ronquist et al.,
2012), we used the best-fit partitioning strategy consisting of by-gene
and by-coding positions in all phylogenetic analyses (21 partitions;
Table A.2 in Appendix A). Other less-fit partitioning schemes that were
analyzed include: (a) all sequences concatenated (1 partition), (b) mi-
tochondrial and nuclear sequences (2 partitions), (c) each gene marker
(7 partitions), and (d) nucleotide sites grouped in bins with comparable
relative evolutionary rates as estimated by the program TIGER
(Cummins and Mclnerney, 2011) (3 partitions), after verifying con-
gruence among single-gene tree topologies (Fig. A.4 in Appendix A).

Maximum likelihood analysis was conducted using RAXML v8.0 as
implemented in CIPRES (Miller et al., 2010). We performed “rapid
bootstrapping” with 1000 iterations to assess the level of node support.
Bayesian inferences were conducted using MrBayes v3.2.2, with two
independent runs, each for 50 million generations with sampling every
5000 generations. We applied the mixed option for nucleotide sub-
stitution (Huelsenbeck et al., 2004) to each partition and a conservative
burnin of 25%. We verified that the final average standard deviation
split frequencies were lower than 0.05, PSRF values were approaching
unity, and log-likelihoods reached a stationary distribution.


http://species.h-its.org/ptp/
http://species.h-its.org/ptp/

P. Matos-Maravi et al.

2.3. Molecular dating of phylogenies

Divergence dates were obtained under the uncorrelated relaxed-
clock model as implemented in BEAST v2.3.1 (Bouckaert et al., 2014),
using a reduced dataset comprising one specimen per species. The level
of completeness of this molecular dataset is nearly 85%. We calibrated
the phylogeny using three extinct Prenolepis-group species with affi-
nities to three extant genera (Nylanderia, Prenolepis, and Pseudolasius)
found in Baltic amber (34-42 Ma) and two extinct species within the
extant genera Nylanderia and Zatania from Dominican amber
(15-20 Ma) (LaPolla et al., 2012; LaPolla and Dlussky, 2010) (see Ap-
pendix A for further details on fossil taxa phylogenetic placement).
Because the Baltic fossils cannot be confidently assigned to any extant
infrageneric group or clade, we conservatively constrained the stem
ages of Nylanderia, Prenolepis, and Pseudolasius using an exponential
distribution with mean of 5.0 and offset to 34.0. The Dominican fossils,
instead, closely resemble extant clades and are likely members of crown
groups (LaPolla et al., 2012; LaPolla and Dlussky, 2010). Therefore we
constrained the minimum crown ages of Zatania and the North Amer-
ican Nylanderia parvula clade following an exponential distribution with
mean of 3.0 and offset to 15.0. In addition, we also constrained the stem
of the genus Lasius (outgroup) based on fossil data from Baltic amber
deposits, following the same calibration parameters as above. A sec-
ondary calibration point was used to constrain the root of the tree (i.e.,
the tribe Lasiini), by setting a broad normal distribution to the root
height with mean of 77.4 Ma (5% quantiles to 66.5Ma and 88.3 Ma),
following Blaimer et al., (2015).

We selected the Birth-Death Model as the tree prior (Stadler, 2009),
and substitution models were unlinked across partitions. The best
substitution models for each gene partition were calculated using
jModelTest 0.1.1 (Posada, 2008) under the Bayesian Information Cri-
terion: GTR+ I model for CAD; HKY +I' model for EF-1aF1; SYM+T'
model for EF-1aF2; GTR+TI model for COI; GTR+TI model for LWR;
and SYM+T model for wingless. We ran the analyses using four in-
dependent runs for 100 million generations each, sampling every 5000
generations. We checked that ESS values were higher than 200 before
combining and summarizing the estimated trees (Figs. 2 and 3). An
additional analysis using the Yule tree model is presented in Fig. A.5 in
Appendix A.

2.4. Biogeographical inferences

We estimated ancestral geographic ranges to test the competing
pairs of Hypotheses 1-3 on the origin of New Guinean, Melanesian and
TSP ant diversity (i.e., first faunal interchange between SE Asia and
Australia, and colonization events to New Guinea, Vanuatu, and Fiji).
Although the New World and the Afrotropics were considerably un-
dersampled, it is probable based on morphological similarities (Kallal
and LaPolla, 2012; LaPolla et al., 2011; LaPolla et al., 2010a, 2010b)
and global framework phylogenies (Blaimer et al., 2015; LaPolla et al.,
2010a) that such missing taxa would cluster along the well-defined,
geographically correspondent clades (Figs. 2 and 3; see Appendix A for
further accounts on morphology and distribution of missing taxa).
Geographical distributions of species were taken from the literature and
public databases (e.g., Clouse, 2007; Economo & Sarnat, 2012; Antweb,
2016), as well as from our field records (http://www.newguineants.
org).

Ancestral geographic ranges were estimated following the Dispersal-
Extinction-Cladogenesis model (Ree et al., 2005) and including a
founder-event speciation parameter (DEC + J; Matzke, 2014). We
conducted our biogeographical analyses by finely subdividing the focal
region based on biogeographical characteristics of Pacific fauna (Fig. 1;
Keppel et al., 2009), resulting in a total of nine global geographical
areas. The palaeogeographic models of the Indo-Pacific (Gillespie and
Clague, 2009; Hall, 2013, 2002) were incorporated as differential rates
of dispersal (range expansion) across a time-stratified phylogeny at 25,
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Fig. 2. Time-calibrated phylogeny of the Prenolepis genus-group and outgroup taxa (in
grey) as inferred in BEAST. Six fossil-based calibration points were used as minimum ages
for crown (Zatania, Nylanderia parvula group) or stem groups (Lasius, Prenolepis,
Pseudolasius, Nylanderia), based on morphological affinities or apomorphies sharing with
close taxa (LaPolla and Dlussky, 2010). A secondary calibration from (Blaimer et al.,
2015) was used for the root of the tree (tribe Lasiini). Posterior probabilities of each node
are depicted as coloured asterisks (black for > 0.95; red for 0.75-0.94; values < 0.75
are not shown). 95% credibility intervals for divergence times are displayed over each
node in the tree. The seven main Indo-Pacific clades within the Prenolepis genus-group are
numbered in the phylogeny. Scale bar in Ma. Inset, specimen photographs in frontal and
lateral views. Red scale bar in each photograph represents 1 mm. A: Paraparatrechina
opaca (MJ15399, New Guinea); B: Paraparatrechina sp. VANU00O2 (CR120619-01-02,
Vanuatu); C: Pseudolasius sp. PSEU002 (MJ9384, New Guinea); D: Pseudolasius sp.
PSEU005 (MJ16068, New Guinea); E: Nylanderia nuggeti (MJ6887, New Guinea); F: Ny-
landeria vaga (MJ16124, Fiji).
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Fig. 3. Time-calibrated phylogeny of the Indo-Pacific Prenolepis shown in Fig. 2. Squares
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ranges, respectively. Coloured symbols depicts the recorded habitat preference (leaf
shape) and elevation of each Indo-Pacific species (mountain shape). One or two most
probable ancestral geographical ranges estimated in BioGeoBEARS under the DEC + J
model are depicted over each node; red asterisks represent ranges with probabilities
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cestral state reconstruction of habitat and elevation preferences using Mesquite on each
Indo-Pacific clade, are displayed as coloured branches. The median ages of clades 1-7
(gray circles), main biogeographical events (red bars), and main geological events (black
bars), are each depicted below the phylogeny. Scale bar in Ma.
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Table 1

Statistical comparison across eight biogeographical models as implemented in
BioGeoBEARS. LnL: log-likelihood of the model; numparams: number of parameters; d:
rate of anagenetic range expansion; e: rate of anagenetic range contraction; j: founder-
event parameter weight. The relative probability of each model was estimated using
Akaike weights based on the AICc values estimated in BioGeoBEARS. The model DEC + J
stratified model (in asterisks) outperformed other biogeographical models.

LnL numparams d e ] AlCc Akaike
weights
DEC+J" -29842 3 0.026 0.003 0.246 602.84 0.99845
DIVA- —304.89 3 0.029 0.002 0.252 615.79 0.00154
LIKE-
+J
BAYAREA- —311.57 3 0.026 0.004 0.241 629.14 0.00000
LIKE-
+J
DEC —328.26 2 0.041 0.009 - 660.51 0.00000
DIVA-LIKE = —333.74 2 0.046 0.007 - 671.49  0.00000
BAYAREA- —364.74 2 0.044 0.046 - 733.48 0.00000
LIKE

15, and 5Ma. Relative dispersal rates between two areas were arbi-
trarily set from 1.0 to 10~ as an attempt to represent the extent of
geographic barriers such as sea straits and mountain ranges (see Ap-
pendix A for further details). The analyses were performed on a like-
lihood framework using the R package BioGeoBEARS (Matzke, 2013).
Further analyses using other biogeographical models, including the
DIVA-LIKE and BAYAREA-LIKE, are described in Appendix A but in all
cases the DEC + J model outperformed other biogeographical models
(Akaike weight = 0.998, Table 1).

2.5. Reconstruction of ancestral habitat preferences and diversification
rates

We reconstructed ancestral ecological preferences of Indo-Pacific
clades to evaluate any association between niche shift and geographical
range expansion (competing pair of Hypotheses 4a-b). We compiled
habitat preferences for each species from the literature (e.g., Clouse,
2007; Economo & Sarnat, 2012; Antweb, 2016) and our field records
(http://www.newguineants.org). Locality information for each col-
lected specimen, including habitat type and GPS coordinates, are pre-
sented in Appendix A, Table A.1, and each species' distributional in-
formation can be found in Table A.4 and in the New Guinea Ants
database (http://www.newguineants.org). Three categories were set
for the “habitat” character: (1) undisturbed primary rainforest, (2)
disturbed forest and savanna, (3) highly-disturbed areas including
gardens, docks, coastal margins and urban areas; and “elevation” was
categorized as: (1) lowlands, (2) lower montane, and (3) montane. The
breaks between the three elevation categories were at 800 m and
1600 m on New Guinea, and at 250 m and 500 m on TSP archipelagos,
based on major distributional turnover (pers. obs.; Sarnat & Economo,
2012). Character matrices were used to reconstruct and trace ancestral
states over the phylogeny, under the Fitch Parsimony (unordered)
model and the Mk1 Likelihood model, in Mesquite 3.10 (Maddison and
Maddison, 2016).

To test for expanding geographic ranges and ecological opportunity
driving diversification (Hypothesis 4a), we estimated the diversification
rates of four Indo-Pacific clades, two within Paraparatrechina and two
within Nylanderia. We used the branching times of these Indo-Pacific
lineages to evaluate the best-fitting diversification model using the R
package DDD (Etienne et al., 2012). We carried out the three following
analyses: (1) constant pure-birth diversification (Yule), (2) constant
birth-death diversification (BD), and (3) diversity-dependence birth-
death diversification, with speciation linearly declining with diversity
(DD). Akaike weights were used to estimate the relative probability of
each diversification model fitting our dataset. Diversification rates were
compared across clades to evaluate the alternative scenarios of
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increased rates followed by diversity-dependent speciation, potentially
linked to ecological shifts (Hypothesis 4a) vs. constant phylogenetic
diversification (Hypothesis 4b).

3. Results
3.1. Species delimitation and phylogenetic relationships

The estimated number of species recovered by bPTP ranged be-
tween 80 and 105, with a mean of 92 species (Fig. A.1). Most of the
species boundaries were moderately to highly supported (Bayesian
supporting values > 0.8), and only nine species were not in agreement
with our morphologically-based sorting. Five of these conflicting
lineages, however, represented described species whose morphological
identifications were based on available taxonomic keys and compar-
isons with museum specimens. In cases where there was no sufficient
molecular evidence or conflicting resolutions of molecular species
boundaries, we followed our morphologically-based species delimita-
tions (see Fig. A.1 for a visual inspection of molecular divergences
within these conflicting lineages). Nonetheless, the species diversity
estimated in this study should be taken as preliminary, and a thorough
taxonomic investigation and the usage of multi-species coalescent on
smaller taxonomic groups are strongly demanded, whereas other fast-
evolving molecular markers (e.g., STRs) along with better population
sampling may be beneficial in finding any further cryptic species not
detected here.

The monophyly of each genus and putative species with more than
two individuals sampled was strongly supported in every phylogenetic
analysis (Fig. 2 and Figs A.2-A.4). All Melanesian (which includes New
Guinea), Australian, and TSP lineages clustered together in mono-
phyletic groups and closely related to SE Asian lineages. New World
and African species were recovered in separate clades, and apparently
these geographical regions have not directly contributed to the extant
Melanesian ant fauna. We identified seven highly-supported Melane-
sian and TSP clades (Figs. 2 and 3; posterior probabilities [PP] = 0.95,
bootstraps = 90%): two clades within Paraparatrechina and Pseudola-
sius, and three clades within Nylanderia.

3.2. Divergence times

The crown age of the Prenolepis genus-group was estimated at
46.0 Ma (95% HPD 41.2-51.8 Ma). Ingroup divergence times and tree
topologies were similar and consistently recovered across independent
analyses using distinct tree priors (Birth-Death and Yule) (Fig. A.5).
Moreover, our estimated timing of origin and diversification of the
Prenolepis genus-group is in line with Blaimer et al. (2015), who found
that the group originated and began its diversification by the late Pa-
leocene and Eocene (i.e., about 45-60 Ma). The extant Melanesian
lineages arrived to the region and diversified as early as 23.5 Ma (95%
HPD 19.4-27.9 Ma) (i.e., the crown age of clade 2 within Paraparatre-
china), but it is likely that the actual dispersal event may have been
earlier but probably not before 34.1 Ma (95% HPD 28.9-39.6 Ma),
which represents the stem age of clade 2 in our phylogeny.

3.3. Ancestral state reconstructions and diversification rates

A continental origin from Asia was reconstructed for all the
Melanesian Prenolepis genus-group lineages (Fig. 3). Geographic range
expansions occurred during two main instances: at the early Miocene
(ca. 20-25Ma) from SE Asia to New Guinea, and during the late Mio-
cene and Plio-Pleistocene (ca. 3-10 Ma), again from SE Asia to Mela-
nesia, but also from the latter region towards the remaining of Indo-
Pacific islands (Fig. 4). The DEC + J biogeographical model fits our
molecular phylogeny better than others, such as BAYAREA-LIKE or
DIVA-LIKE (Table 1).

Ancestral state that undisturbed

reconstructions suggested
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(primary) rainforest was the most likely habitat preferred by the
common ancestor of three main Indo-Pacific clades (within
Paraparatrechina and Nylanderia). However, highly-disturbed and open-
environments were recovered as the most-likely ancestral state in clade
7 (within Nylanderia) with about 0.67 marginal probability, and within
clade 2 (Paraparatrechina) with about 0.5 marginal probability. On the
other hand, the origin and evolution of clade 5 (within Nylanderia) is
likely linked to lower montane habitats on New Guinea (marginal
probability of 0.97). At about 10 Ma, there was a shift in habitat pre-
ference from lowland to montane environments in clade 2 with mar-
ginal probabilities of more than 0.6. The colonization of montane areas
in archipelagos of the TSP occurred recently and simultaneously with
the shift to disturbed environments within clades 2 and 7 (< 5.0 Ma).

The evolution of the smaller clades 1 and 5 (within Paraparatrechina
and Nylanderia, respectively) might be explained by two equally-prob-
able diversification models, the constant-rate or the diversity-depen-
dence scenarios. The best-fit diversification model for the larger clades
2 and 7, however, was the diversity-dependence model (Akaike
weights > 0.99). Estimated diversification rates for the small clades
varied between 0.06 and 0.17, whereas the diversification rates for
clade 2 was 0.26, for the P. oceanica—P. minutula subclade within clade 2
was 0.5, and for clade 7 was 0.61 (Table 2).

4. Discussion

Ants in the Prenolepis genus-group likely colonized New Guinea
from continental SE Asia in the early Miocene ca. 25 Ma. Dispersal to
eastern Melanesia (Fiji and Vanuatu) is as old as 10-20 Ma, suggesting
that a subaerial island chain associated with the Vitiaz Arc may have
facilitated the colonization of these archipelagos during the Miocene.
Substantially larger diversification rates in the young and diverse clade
7 (within Nylanderia), and to a lesser extent in clade 2 (within
Paraparatrechina), may have been linked to expansions in both ecolo-
gical preference and geographical range. Therefore, it may be possible
that ecological processes have significantly shaped the ant diversity and
distribution in Melanesia, as partially suggested by the taxon cycle
hypothesis.

4.1. The timing of faunal interchange between SE Asia and Melanesia

Our results support the hypothesis that faunal interchange via
Wallacea occurred as early as the Miocene (ca. 20-25 Ma; Hypothesis
1b), rather than after the late Miocene (Hypothesis 1a). Ancestral range
inferences showed that Melanesian (including New Guinea) and TSP
lineages very likely had a continental SE Asian origin, which agrees
with the hypothesized centre of origin and diversity of the Prenolepis
genus-group in continental tropical Asia (Blaimer et al., 2015; LaPolla
et al., 2011; LaPolla et al., 2010a). Substantial subaerial land before
5-10 Ma may have arisen in Wallacea as scattered volcanic islands
(Hall, 2012), which might have facilitated overwater dispersal of ter-
restrial arthropods in a stepping-stone fashion. But stratigraphic evi-
dence in favour of emergent land in the region at the early Miocene is
scarce (Baldwin et al., 2012; Hall, 2013; Lohman et al., 2011; Stelbrink
et al., 2012; van Ufford and Cloos, 2005). However, biogeographical
patterns and time-calibrated dispersal events suggest that significant
faunal interchange might have occurred already by 25 Ma (Cibois et al.,
2014; Georges et al., 2014; Jgnsson et al., 2011; Mitchell et al., 2014),
whereas it is likely that early Miocene plant dispersal across Wallacea
might have been enhanced by animals (Crayn et al., 2015).

The hypothesis that this exchange was due to the presence of sig-
nificant amounts of land is strengthened by the independent dispersal
events across unrelated ant clades at approximately the same period of
time (i.e., 15-25Ma; Fig. 3), regardless of life history traits. For in-
stance, ant nesting preferences across these clades vary from rotten
logs, leaf litter, to soil, and even some Pseudolasius appear to live
completely underground (LaPolla, 2004). Our results provide further
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Table 2

Phylogenetic diversification analyses on selected Indo-Pacific clades using DDD and the
median divergences times in the chronogram inferred by BEAST. Estimated parameters:
number of parameters in each model (nP), net diversification rate (r) = speciation minus
extinction rates, clade-level carrying capacity (K) in diversity-dependence model, max-
imum likelihood of the model (LogLik), Akaike Information Criterion (AIC), Akaike
weights (A.W.) for each diversification scheme. The most probable model fitting the
dataset is shown in asterisks (). Yule: pure-birth diversification, (BD) constant birth-
death diversification, (DD) diversity-dependent diversification.

Clade 1 (P. opaca clade) nP r K  LogLik AIC AW.
Yule 1 0.072 - —23.304 48.609 0.530
BD 2 0.072 - —23.305 50.609 0.195
DD 2 0.128 20 —22.961 49.922 0.275
Clade 2 (P. oceanica—P. pallida

clade)
Yule 1 0.084 - —83.608 169.216 0.003
BD 2 0.084 - —83.608 171.216 0.001
DD 2 0259 66 ~-76.812 157.623 0.996
Clade 2, (P.oceanica—P. minutula

subclade)
Yule 1 0.108 - —51.925 105.851 0.000
BD 2 0.108 - —51.925 107.851 0.000
DD™ 2 0502 38 —42.681 89.363 1.000
Clade 5 (N. nuggeti clade)
Yule 1 0.063 - —24.200 50.399 0.395
BD 2 0.063 - —24.200 52.400 0.145
DD 2 0.170 15 —23.048 50.097 0.460
Clade 7 (N. obscura clade)
Yule 1 0.157 - —59.661 121.322 0.000
BD 2 0.157 - —59.661 123.322 0.000
DD™ 2 0613 35 -50.165 104.330 1.000

evidence that faunal interchange between Asia and Australia might be
in fact an old palaeozoographic event, aided by a significant increase of
land above water, in both vertebrate and invertebrate lineages, in-
cluding other ants (Economo et al., 2015b).
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4.2. Colonization and diversification in New Guinea

Biogeographical reconstructions of the older colonists of New
Guinea supported Hypothesis 2a that the most likely region of arrival
covered the Central Range and northern New Guinea (Fig. 3), rather
than the southern part of the island including the Papuan peninsula
(Hypothesis 2b), which in the case of the Prenolepis genus-group was
colonized later, after the mid-Miocene (< 15Ma). Predaceous diving
beetles from New Guinea have a similar pattern, though a younger
timing of colonization, from a probable origin in the Central Range
followed by dispersal towards the Papuan peninsula during the last
5Ma (Toussaint et al., 2014). Although other studies found that
southern Papuan lineages may be older than northern taxa (Oliver
et al., 2013), these did not estimate time-calibrated species divergences
thus a young origin, in the mid-Miocene or later, of these southern
Papuan lineages cannot be ruled out. In this study, the model describing
a proto-Papuan archipelago along the northern edge of New Guinea in
the early Miocene is favoured over an old Papuan peninsular origin of
extant New Guinean species diversity.

Older endemics that currently occur in montane habitats, such as
the New Guinean clade 5 and certain lineages within clade 2, probably
originated at about 15 Ma, in agreement with the major orogeny of the
Central Range. Further sampling of montane ants along the Central
Range is necessary to infer the mechanisms driving ant montane spe-
ciation in the region. For instance, ecological processes causing altitu-
dinal segregation have been proposed as drivers of montane diversifi-
cation in birds (Diamond, 1973) and ants (Economo and Sarnat, 2012;
Sarnat and Economo, 2012). On the other hand, a large proportion of
cladogenetic events in New Guinea occurred within northern or
southern lowland areas, and not across them as expected under a
“lowland vicariant” scenario driven by the Central Range. Ecological
constraints and/or geographical barriers within the northern and
southern lowland areas may exist and explain the observed pattern in
the Prenolepis genus-group, such as strong habitat associations and
riverine barriers (Janda et al., 2016). Additionally, we found that on
average each locality harbours 2-3 highly divergent species per genus.
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This may suggest that competitive exclusion of closely related species,
with perhaps similar ecological niches, might be an important me-
chanism of ant community structure in New Guinean lowlands; a pat-
tern described for other low-elevation ant communities (Machac et al.,
2011).

4.3. Colonization of eastern Melanesia

The earliest insect colonization of eastern Melanesia (Vanuatu and
Fiji) was estimated at about 9-17 Ma (Balke et al., 2007; Liebherr,
2005; Lucky and Sarnat, 2010; Sarnat and Moreau, 2011), consistent
with the hypothesis that colonization was facilitated by emergent land
as part of the subaerial Vitiaz Arc as island chain (Hypothesis 3a). In the
Prenolepis genus-group, dispersal has occurred earlier than the recent
re-exposure of land in eastern Melanesia during the Pliocene (Hypoth-
esis 3b), whereas early Miocene land has likely remained above water
and harboured older colonizers to the present. Our phylogenetic re-
constructions indicate that New Guinea was the likely source of ant
colonists in Vanuatu and Fiji, with estimated ages congruent with
previous ant chronograms (ca. 10-16 Ma; Lucky & Sarnat, 2010; Sarnat
& Moreau, 2011). Dispersal to these archipelagos apparently ceased
until the Plio-Pleistocene, when younger colonization events occurred
at about 5 Ma, consistent with the recent re-exposure of subaerial land
in the TSP. This apparent absence of dispersal during the late Miocene
and early Pliocene may be expected given the disruption of the arc at
about 10 Ma, when the Ontong-Java Plateau collided with the Vitiaz
trench (Ewart, 1988; Hall, 2002). However, further dated phylogenies
of eastern Melanesian insects are needed to rule out other potential
explanations, such as local extinction events that erased traces of ant
dispersal between 5 and 10 Ma.

Range expansions to Micronesia and Polynesia have happened since
5Ma, in line with the significant exposure of land in these regions
during the late Miocene and Pliocene. Colonization of Palau, the richest
in species diversity among Micronesian and Polynesian archipelagos
(six Prenolepis genus-group taxa), occurred since 5 Ma from two sources:
New Guinea and the Philippines. No local ant radiation has been in-
ferred, instead, the faunal assemblage in Palau might be the result of a
long history of colonization events by unrelated lineages (Rundell,
2008). Dispersal to the Caroline Islands and to eastern Polynesia oc-
curred geologically recently (< 4 Ma) by species with wide geographic
ranges. These time-calibrated dispersal events significantly post-date
the geological origins of Western Pacific archipelagos inferred since at
least the mid-Miocene ca. 15 Ma (Rehman et al., 2013). Submergence of
land and complete eradication of Miocene fauna by the Miocene/Plio-
cene transition might explain the apparent “delay” in colonization ob-
served in our phylogeny. On the other hand, two invasive species, the
longhorn crazy ant (Paratrechina longicornis) and the robust crazy ant
(Nylanderia bourbonica) most likely spread throughout the Pacific due to
commerce. In those cases, closely related COI haplotypes were re-
covered from distant localities, and no apparent genetic structure across
islands was evident (in contrast with, for instance, Nylanderia vaga,
which is similar in age and distribution; Fig. A.3).

4.4. The connection between niche shifts and diversification

One of the main predictions of the taxon cycle hypothesis is that
range expansions may be facilitated by shifts in habitat preference,
eventually resulting in ecological release whereby relaxed selective
pressures caused by ecological opportunity may promote phenotypic
variability and speciation. Species adapted to lowland marginal habi-
tats, such as the coasts of islands, might be more prone to colonize other
archipelagos by overwater dispersal (Hypothesis 4a). Although an ex-
plicit relationship between expansion/contraction phases and shifts in
diversification rates has not been formulated, it may be possible that
expanding lineages diversify due to ecological innovation through the
key adaptation to marginal habitats. Using ancestral character state
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reconstruction, we found that ant habitat preferences for highly dis-
turbed and open environments may be linked to geographical expan-
sion across archipelagos (e.g., within clade 2 and in clade 7). Moreover,
adaptation to disturbed environments might also explain one of the
origins of ant invasiveness, as some of the tramp species are closely
related and derived from common ancestors already adapted to mar-
ginal habitats (e.g., Nylanderia bourbonica, N. vaga, and N. obscura, all
within clade 7). In addition, alternative reproductive strategies are
known to increase the invasive potential of some ant species, such as
Paratrechina longicornis (Pearcy et al., 2011), by producing queens
clonally (thelytoky) and avoiding the negative effects associated with
small founding populations (Rabeling and Kronauer, 2013).

Although diversification rates and any shift in evolutionary dy-
namics across clades need to be studied in the light of a global, well-
sampled phylogeny, we propose that speciation in the Indo-Pacific may
have not remained constant across clades. Older colonization events to
the Indo-Pacific do not necessarily explain the disparate species-rich-
ness observed across clades (Hypothesis 4b), but it seems that ecolo-
gical processes may enhance diversification and broaden geographical
distribution of the ants. The main diversification of extant Prenolepis
genus-group lineages in the Indo-Pacific has occurred on New Guinea
since the past 15Ma, but younger clades (clades 2 and 7) hold de-
coupled diversification dynamics compared to older clades (clades 1
and 5).

We showed that diversification scenarios facilitated by ecological
innovations (shifts in habitat preference) in the Indo-Pacific region
cannot be ruled out (Hypothesis 4a). Ecological opportunity in a mac-
roevolutionary perspective might be related to an initial burst in spe-
ciation rates followed by diversity-dependent deceleration of diversifi-
cation rates (Etienne and Haegeman, 2012; Rabosky, 2010). On the
contrary, under a time-dependent diversification model (Yule or Birth-
Death) speciation is constant, and the extant diversity across clades is
primarily explained by the age of lineage’s origin (Hypothesis 4b). The
diversification rates of the clade 7 (and partially within clade 2) have
accelerated compared to other Indo-Pacific taxa (Table 2). This coin-
cides with the reconstructed shift in ecological preference towards
disturbed habitats (Fig. 3), which may have increased the “ecological
limits” determining the clades’ species richness (Rabosky, 2009). Ac-
cordingly, shifts in habitat preference (ecological release) may not only
favour geographical range expansion, as proposed by the taxon cycle
hypothesis, but may also trigger species diversification of terrestrial
invertebrates in Melanesia. In this line, recent developments of island
biogeography models also predict that speciation rates would peak
before islands reach maximal topographic complexity, as empty niche
space will provide more opportunities for radiation (Whittaker et al.,
2008). However, a more rigorous approach to study macroevolutionary
dynamics, including the study of ant ecology (e.g., worker abundances,
dispersal abilities) and mathematical models that consider species
abundances (Rosindell and Phillimore, 2011) are needed before at-
tempting a formal test of the taxon cycle in the light of molecular
phylogenies.

5. Conclusions

We found evidence of old insect colonization events from SE Asia to
New Guinea, dating to at least the early Miocene (ca. 25 Ma). A broad,
faunistic and floristic interchange between Asia and Australia may have
happened earlier than previously thought geographically possible.
Moreover, early insect radiations on New Guinea have apparently oc-
curred along the northern edge of the island, contrasting with the hy-
pothesis of an older, subaerial Papuan peninsula. Colonization of
eastern Melanesia (i.e., Vanuatu and Fiji) may be as old as 10-20 Ma, in
agreement with the hypothesized ancient island chain Vitiaz Arc con-
necting the proto-Papuan archipelago to the Fiji Basin. In addition, a
link between ecological shifts, geographic range expansion, and phy-
logenetic diversification of insular arthropods cannot be ruled out, and
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such shifts may have promoted geographical range expansion and
triggered diversification of the Indo-Pacific ant fauna. Further studies of
other New Guinean and Melanesian insect lineages would clarify if
speciation in the region is primarily driven by ecological factors, and if
so, whether that is characterized by the fragmentation of geographic
ranges or adaptation to new, empty niches.
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