Myrmecia croslandi

AntWiki: The Ants --- Online
Myrmecia croslandi
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Formicidae
Subfamily: Myrmeciinae
Tribe: Myrmeciini
Genus: Myrmecia
Species group: pilosula
Species: M. croslandi
Binomial name
Myrmecia croslandi
Taylor, 1991

Individuals may have a single pair of chromosomes. Myrmecia croslandi (along with the locally less frequent M. impaternata) is common in Canberra parks, gardens, suburban grass lawn roadside “nature strips” and in grassy bushland. Nests of the two species are sometimes found only meters apart. Croslandi was found similarly common at localities near Armidale, NSW in Dec/Jan. 1995–96 and Nov. 1999 by JACP collectors. It is also sympatric there with M. impaternata. Several records confirm the presence of this species in SE Queensland.

Identification

Keys including this Species

Distribution

Myrmecia croslandi was described initially from the ACT, nearby NSW and Warrandyte South, VIC. It is now known also from the New England Tablelands in northeastern NSW and upland localities on the Darling Downs of SE QLD, from Glen Innes in northeastern NSW, and from near Cobangra, VIC.

Latitudinal Distribution Pattern

Latitudinal Range: -27.11° to -37.6°.

   
North
Temperate
North
Subtropical
Tropical South
Subtropical
South
Temperate

Distribution based on Regional Taxon Lists

Australasian Region: Australia (type locality).

Distribution based on AntMaps

AntMapLegend.png

Distribution based on AntWeb specimens

Check data from AntWeb

Countries Occupied

Number of countries occupied by this species based on AntWiki Regional Taxon Lists. In general, fewer countries occupied indicates a narrower range, while more countries indicates a more widespread species.
pChart

Estimated Abundance

Relative abundance based on number of AntMaps records per species (this species within the purple bar). Fewer records (to the left) indicates a less abundant/encountered species while more records (to the right) indicates more abundant/encountered species.
pChart

Biology

Sympatric variously with Myrmecia impaternata and Eastern Myrmecia pilosula, and with Myrmecia haskinsorum (and Eastern pilosula) at Corang River Bridge (-35 12, 150 03). Most known records of M. impaternata were taken in sympatry with M. croslandi.

Morphology

Myrmecia use their large eyes to locate prey and to find their way back to the nest from their foraging forays. Ogawa et al. (2015) wanted to know how complex the color reception in ants may be and they felt M. croslandi was a good candidate for exploring this question. They provided evidence about photoreceptors in M. croslandi and Myrmecia vindex that show ants can have sophisticated trichromatic color reception. Their abstract (Ogawa et al. 2015): Ants are thought to be special among Hymenopterans in having only dichromatic colour vision based on two spectrally distinct photoreceptors. Many ants are highly visual animals, however, and use vision extensively for navigation. We show here that two congeneric day- and night-active Australian ants have three spectrally distinct photoreceptor types, potentially supporting trichromatic colour vision. Electroretinogram recordings show the presence of three spectral sensitivities with peaks (lmax) at 370, 450 and 550 nm in the night-active Myrmecia vindex and peaks at 370, 470 and 510 nm in the day-active Myrmecia croslandi. Intracellular electrophysiology on individual photoreceptors confirmed that the night-active M. vindex has three spectral sensitivities with peaks (lmax) at 370, 430 and 550 nm. A large number of the intracellular recordings in the night-active M. vindex show unusually broad-band spectral sensitivities, suggesting that photoreceptors may be coupled. Spectral measurements at different temporal frequencies revealed that the ultraviolet receptors are comparatively slow. We discuss the adaptive significance and the probability of trichromacy in Myrmecia ants in the context of dim light vision and visual navigation.

Determination Clarifications

It was discussed as “M. pilosula” by Crosland and Crozier (1986), and as “M. (pilosula) n=1” by Imai & Taylor (1989).

Castes

Phylogeny

Myrmecia
gulosa group

Myrmecia esuriens

Myrmecia midas

Myrmecia pulchra

Myrmecia mjobergi

Myrmecia regularis

Myrmecia forficata

Myrmecia brevinoda

Myrmecia erecta

Myrmecia pyriformis

Myrmecia browningi

Myrmecia sp.

Myrmecia analis

Myrmecia minuscula

Myrmecia comata

Myrmecia rowlandi

Myrmecia flavicoma

Myrmecia tarsata

Myrmecia tridentata

Myrmecia eungellensis

Myrmecia fabricii

Myrmecia athertonensis

Myrmecia auriventris

Myrmecia borealis

Myrmecia gulosa

Myrmecia forceps

Myrmecia simillima

Myrmecia arnoldi

Myrmecia fulgida

Myrmecia pavida

Myrmecia vindex

Myrmecia fuscipes

Myrmecia (near nigriceps)

Myrmecia desertorum

Myrmecia nigriceps

Myrmecia nigriceps

Myrmecia inquilina

nigrocincta group

Myrmecia flammicollis

Myrmecia petiolata

Myrmecia nigrocincta

picta group

Myrmecia fucosa

Myrmecia picta

Myrmecia infima

Myrmecia urens

apicalis group

Myrmecia apicalis

pilosula group

Myrmecia testaceipes

Myrmecia acuta

Myrmecia chasei

Myrmecia clarki

Myrmecia dispar

Myrmecia occidentalis

Myrmecia tepperi

Myrmecia elegans

Myrmecia varians

Myrmecia banksi

Myrmecia croslandi

Myrmecia impaternata

Myrmecia haskinsorum

Myrmecia pilosula

Myrmecia pilosula

Myrmecia (near pilosula)

Based on Mera-Rodríguez et al. (2023).

Nomenclature

The following information is derived from Barry Bolton's Online Catalogue of the Ants of the World.

  • croslandi. Myrmecia croslandi Taylor, 1991c: 288 (w.k.) AUSTRALIA (New South Wales, Australian Capital Territory, Victoria).
    • Type-material: holotype worker, 79 paratype workers.
    • Type-locality: holotype Australia: New South Wales, immediately NE Corang River Bridge (35°08’S, 150°02’E), on Braidwood-Nowra Road, nr Charleyong, xii.1989, HI89-031 (H.T. Imai, et al.); paratypes: 15 workers with same data, 14 workers with same data but HI89-030, 8 workers with same data but HI89-032, 6 workers with same data but xii.1987, HI87-136, 6 workers with same data but xii.1987, HI87-148, 6 workers with same data but xii.1987, HI87-150, 6 workers with same data but xii.1987, HI87-151, 6 workers with same data but xii.1987, HI87-153, 6 workers with same data but xii.1987, HI87-154, 6 workers with same data but xii.1987, HI87-157.
    • [Note: Taylor, 2015a: 503, gives slightly different type-locality data: “immediately E to NE Corang River Bridge (-35 12, 150 03) on Nerriga Road, nr Braidwood”.]
    • Type-depository: ANIC.
    • Imai, Taylor & Crozier, 1994: 145 (k.).
    • Status as species: Bolton, 1995b: 271; Taylor, 2015a: 503.
    • Distribution: Australia.

Type Material

Unless otherwise noted the text for the remainder of this section is reported from the publication that includes the original description.

Description

Worker

Taylor (2015) - General features as illustrated and in key couplets 1, 2, 5 & 6. Distinguished from other pilosula-complex species by its robust form, more massive petiolar node, especially versus representatives of the two races of Myrmecia pilosula (compare Figures) and other details, as specified in the key. Middle and hind tibiae medium brown, matching the femora, the tibial apices minutely lightly infuscated at the bases of the reddish-orange spurs. Larger workers of both races of M. pilosula often closely resemble those of Myrmecia croslandi. Western M. pilosula is then distinguishable by its reddish-orange hind tibiae (see below under that species), but Eastern M. pilosula and M. croslandi are essentially identical in leg coloration (see key couplet 6 for their discrimination).

The holotype and smallest and largest available specimens have the following dimensions (mm): TL = 13.54, 12.46, 13.53; HW = 2.63, 2.54, 2.79; HL = 2.35, 2.37, 2.51; CI = 112, 107, 111; EL =1.02, 1.02, 1.08; OI = 39, 40, 39; SL = 2.02, 1.99, 2.06; SI = 77, 78, 74; PW = 1.70, 1.60, 1.81; WL = 3.88, 3.73, 4.06; PetW = 1.06, 0.93, 1.14; PpetW = 1.59, 1.43, 1.69.

Karyotype

  • n = 2, 2n = 3, karyotype = 1M+1M+1A (Australia) (Taylor, 1991; Meyne et al., 1995; Hirai et al., 1994; Hirai et al., 1996; Imai et al., 1992; Imai et al., 1994) (Complex pilosula).
  • n = 2, 2n = 3, karyotype = 1M+1SM +1M (Australia) (Taylor, 1991; Meyne et al., 1995; Hirai et al., 1994; Hirai et al., 1996; Imai et al., 1992; Imai et al., 1994) (Complex pilosula).
  • n = 2, 2n = 4, karyotype = 2SM +1A+1A (Australia) (Taylor, 1991; Meyne et al., 1995; Hirai et al., 1996; Imai et al., 1992; Imai et al., 1994) (Complex pilosula).
  • n = 1, 2n = 2 (Australia) (Taylor, 1991; Meyne et al., 1995; Hirai et al., 1994; Hirai et al., 1996; Imai et al., 1994) (Complex pilosula).

Taylor (2015) - Workers and queens in some colonies have the minimum possible eukaryote chromosome count of 2N=2. Myrmecia croslandi is widely celebrated as the only animal other than the nematode Diploscapter coronata known to possess a single pair of chromosomes. Imai & Taylor (1989) reported that its chromosome numbers in fact vary, ranging 2n=2, 3 or 4, and that croslandi demonstrates highly complicated chromosome polymorphisms, including telomere fusion, shift of centromeric activity by centromeric inactivation, salutatory growth of constitutive heterochromatin (C+), and AM inversion. Typical croslandi karyotypes with 2n=2 (2K=2Mci), and 2n=3 (2K=lAc+1M+1Mci) were illustrated by Imai, Taylor et al. (1994, figs 5a, 5b), and karyological details discussed by Imai, Hirae et al. (1992).

Etymology

Named for Michael W. J. Crosland, who as a student of R. H. Crozier at the University of New South Wales, Sydney, discovered the 2n=2 chromosome count while experimenting with the Crozier/Imai air-drying technique of chromosome preparation for microscopy (to great initial consternation that the technique had failed, but later celebration). Crosland had collected the subject specimens shortly before at Tidbinbilla Nature Reserve near Canberra.

References

References based on Global Ant Biodiversity Informatics

  • Imai, H. T.; Taylor, R. W.; Crozier, R. H. 1994. Experimental bases for the minimum interaction theory. I. Chromosome evolution in ants of the Myrmecia pilosula species complex (Hymenoptera: Formicidae: Myrmeciinae). Japanese Journal of Genetics 69:174. [1994-04-25] PDF 126063
  • Jayatilaka P., C. A. Raderschall, A. Narendra, and J. Zeil. 2013. Individual foraging patterns of the jack jumper ant Myrmecia croslandi (Hymenoptera: Formicidae). Myrmecological News 19: 75-83.
  • Taylor R. W. 2015. Ants with Attitude: Australian Jack-jumpers of the Myrmecia pilosulaspecies complex, with descriptions of four new species (Hymenoptera: Formicidae: Myrmeciinae). Zootaxa 3911(4): 493-520.